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1. GOALS OF SYSTEM RESEARCH IN THE TANGRAM 
PROGRAM 

The vast quantities of data available on-line presents a tremendous opportunity for 
organizations to perform large-scale data analysis and information extraction. Research in 
machine learning and data mining continually produces new and improved algorithms 
and data analysis capabilities such as feature selection, relational learning, event 
detection, social networks analysis, and spatial clustering among others. However, the 
performance of different algorithms varies widely as a function of the characteristics of 
the data being processed. Furthermore, end-to-end analysis applications demonstrate that 
algorithms often perform best in combination with others that may enrich the data or 
prune the hypothesis space. The assembly of such end-to-end applications can take weeks 
of: (1) manual data selection, integration, and conversions; (2) algorithm selection by 
experts; (3) manual parameter adjustment of individual algorithms; and (4) manual 
software integration and execution. Thus, while the composition of multiple algorithms to 
achieve performance improvement has been shown to be worthwhile and possible in 
principle, the cost of manually constructing these applications is prohibitive.  

The goal of the System Research (SR) component of Tangram is to drastically 
reduce the human effort required to configure and execute new workflows for data 
analysis from weeks to minutes by eliminating the need for costly human monitoring and 
intervention. This requires developing robust end-to-end data analysis systems to analyze 
data from many distributed sources and with many different algorithms and analytical 
tools. Customized data mining applications need to be automatically assembled by 
drawing from a library of the best available algorithms. The system needs to assess the 
computation required by the application and its priority, and execute it efficiently by 
drawing on computing resources available for execution in a distributed environment. 
Data providers (called data catalog or DC) may provide services to access data sources.  
There can be many organizations playing the role of data providers, and as a result data 
may be accessible in various catalogs that are in distributed remote locations.  Other 
organizations may provide algorithms, services, models, or implemented codes that can 
process data and can be used as components of the workflow. We call them process 
catalog or PC. These are typically distributed and provided by different organizations. 
Therefore, an important requirement for workflow systems is that they must rely on 
distributed services to access the data and algorithms necessary for data analysis. The 
system needs to incorporate dynamically new algorithms, new data sources, and new 
computing resources, and learn to adapt its behavior appropriately.  

Our ultimate goal is to deliver these capabilities to thousands of users operating in 
different organizations where data and other resources would be shared. The scale of the 
computations required is daunting. Our goal is to develop a system that could serve an 
organization of (on the order of) O(10^4) users, each issuing O(100) new and repeated 
queries daily that may overlap with queries by others, while providing access to O(100) 
data sources and databases ranging from O(10^9) to O(10^6) records, which are updated 
almost daily. Such a system requires the ability to: (1) specify, coordinate and prioritize 
large numbers of complex sequences of analysis steps; (2) scale the amount of processing 
and storage so as to accommodate ever-increasing sources of data and algorithmic 
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complexity; and (3) dynamically share data, computing, storage, and analysis resources 
across communities of information providers, service providers, and users.  

The SR team has extensive experience helping scientific communities move from 
manually intensive and limited settings to distributed computation environments in which 
complex large-scale applications that compete for shared resources are managed, 
optimized, executed, and recorded. Earth scientists, physicists, biologists, and 
astronomers, among others, are able to routinely exercise complex data processing of 
unprecedented scale with drastically reduced effort and increased computation, compared 
to capabilities they had a decade ago. We structure these applications as workflows 
described in high-level, declarative notations, and comprising hundreds of steps and 
processing large quantities of data that comes from multiple, distributed data sources. We 
use grid computing infrastructure to manage the execution of large numbers of concurrent 
workflows on shared distributed resources. For this program, we applied these 
technologies to bring the power of unprecedented scale and synthesis to data analysis 
problems.  

Our approach combines three central ideas:  

1. Workflows as first class citizens, with rich representations of algorithmic 
requirements and data products so they can be automatically assembled and 
executed to respond to user-supplied queries.  

2. Semantic representations to enable automatic generation of complex workflows 
and systematic management of many workflow candidates.  

3. Grid computing to manage the high-performance execution of many workflows, 
in distributed cross-organization environments.  

 

2. ARCHITECTURE OF THE WORKFLOW SYSTEM 

The SR workflow system is an extension of the existing Wings/Pegasus workflow 
system. Major extensions under this program include a Workflow Generation system for 
fully automatic algorithm and data selection, and an Ensemble Manager for dynamic 
management of concurrent workflow generation and execution.  

Given a line of inquiry, one or more workflow requests are created. Each workflow 
request contains a description of desired workflow data products and other constraints 
such as deadlines for returning an answer. Workflow requests are submitted to the 
workflow system. A given workflow request results in the execution of several 
workflows, and the answer is returned from workflow execution. Because many such 
workflow requests can be submitted to the workflow system concurrently, the workflow 
system needs to prioritize these requests and assign resources accordingly. The details of 
workflow generation and execution steps are recorded and are available for inspection 
after execution. 
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2.1 Major Components of the Workflow System 

 

 
 

Figure 1:  SR Architecture 
 
Figure 1 shows the different components of the workflow system in different stages. 
Major components of the Workflow System are: 1) Workflow Generation and Execution 
System 2) Ensemble Manager and 3) Workflow System Logging.  

The Workflow Generation and Execution System was developed as an extension of 
the Wings/Pegasus workflow system.  It includes steps for data and algorithm selection, 
workflow evaluation and ranking, and finally workflow mapping and execution. APIs to 
DC (data catalog) and PC (process catalog) have evolved from simple basic versions to 
extended ones that are used for the System Evaluation at 18 months (i.e., SE-18 
evaluation). 

The Ensemble Manager (EM) component of the SR system is responsible for 
supporting the creation and the execution of multiple workflows at the same time. 
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Current workflow systems allow only sequential or uncoordinated creation and execution 
of a single workflow. The Ensemble Manager that we developed coordinates and 
efficiently handles planning and executing 100’s to 1000’s of workflows simultaneously 
on the Grid.  The EM manages sets of workflows, with each set specified as a workflow 
ensemble. A workflow ensemble may, for example, contain the pool of candidate 
workflows being considered for a given step in the workflow generation process. The EM 
is invoked to perform on workflow ensembles any of the generation, planning, and 
execution steps of the workflow generation processes.  

The Workflow System Logs contains records of the workflow generation and 
execution process within the SR system. The Workflow System Logs are being used by 
System Evaluation Architecture (SEA) and other teams. SEA is using the Workflow 
System Logs to retrieve records of the system's performance for a given workflow 
request, as well as records of the workflow generation and execution process that can be 
audited and analyzed. PC is using the Workflow System Logs to learn performance 
characteristics based on workflow execution data. Many details are available about the 
Workflow System Logs, including examples and ontologies, as described in Section 6.2. 

SR has developed a set of new capabilities for our own Grid called “TanGrid” 
support, software deployment, and SEA Site Catalog, including providing probes to 
gather TanGrid site information and generate a dynamic site catalog.  

The query manager, template library, and the components for end user interaction 
were considered as post SE-18 activities. 
 
2.2 The Wings/Pegasus Workflow System 

 
The Wings/Pegasus workflow system was originally developed under several National 
Science Foundation grants and has been used in several large-scale distributed scientific 
applications [Wings 2008; Pegasus 2008; Deelman et al., 2003; Deelman et al., 2005; 
Deelman et al., 2006; Gil et al., 2005; Gil, 2006; Gil et al., 2006; Gil et al., 2007; Kim et 
al., 2007; Kim et al., 2006]. It is the basis for the SR Workflow System, which is 
extending Wings/Pegasus with new capabilities and integration requirements of this 
program.  We summarize here briefly the Wings/Pegasus Workflow System. 

Wings uses ontology-based descriptions of software components and data sources to 
generate a workflow. It includes a workflow template editor that allows a user to define 
useful and reusable combinations of components and their dataflow. Wings focuses on 
the domain-dependent aspects of the workflow, but not in execution-level concerns. 
Wings takes the user’s workflow requirements and generates a high-level workflow for 
Pegasus. 

Pegasus generates executable workflows by assigning execution resources to the 
computations in the workflow. Pegasus also reduces the workflow execution time by 
eliminating unnecessary computations whose results already exist and can be reused, and 
reorganizing the structure of the workflow to minimize job queuing time and data 
movements. It then submits the workflows to the grid for execution and monitors their 
status and repairs routine low-level execution failures.  
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To support the creation and validation of very large workflows, Wings/Pegasus takes 
an approach that considers three stages for workflow creation, where each stage 
corresponds to a different level of abstraction, and where a new type of information is 
being added to the workflow. Wings supports the first two layers, while Pegasus supports 
the third.  

The first layer of workflow creation defines workflow templates that are data- and 
execution-independent specifications of computations. Workflow templates express 
repetitive computational structures in a compact manner and identify the types of 
components to be invoked and the data flow among them. A workflow template is an 
abstract specification of a workflow, with a set of nodes and links where each node is a 
placeholder for a component or component collections (for iterative execution of a 
program over a file collection), and each link represents how the input and output 
parameters are connected. The nature of the components constrains the type of data that 
the workflow is designed to process, but the specific data to be used are not described in 
the template. A workflow template can be shared and reused among users performing the 
same type of analysis. 

The second layer of workflow creation uses workflow templates as a starting point to 
create workflow instances that are execution-independent. Workflow instances specify 
the input data needed for an analysis in addition to the application components to be used 
and the data flow among them. A workflow instance can be created by selecting a 
workflow template that describes the desired type of analysis and binding its data 
descriptions to specific data to be used. While a workflow instance logically identifies the 
full analysis, it does not include execution details such as the physical replicas or 
resources to be used. That is, the same workflow instance can be mapped into different 
executable workflows that generate exactly the same results but use different resources 
available in alternative execution environments. 

The third and final layer of workflow creation maps workflow instances onto 
executable workflows. Executable workflows are created by taking workflow instances 
and assigning actual resources that exist in the execution environment and reassigning 
them dynamically as the execution unfolds. Executable workflows fully specify the 
resources available in the execution environment (e.g., physical replicas, sites and hosts, 
and service instances) that should be used for execution. This is the stage done by 
Pegasus. 

Wings implements the approach outlined above taking a workflow template and 
initial input file descriptions, and creating a workflow instance called DAX (DAG XML 
description). Pegasus transforms a DAX into an executable workflow through a mapping 
that assigns tasks to available grid resources for execution. The details on the 
representation and the workflow reasoning are reported in [Kim et al., 2006; Gil et al., 
2006; Deelman et al., 2004]. 

Details about how workflows are composed and executed can be found in the 
Wings/Pegasus Provenance Challenge Site [WingsPegasus 2007].  A detailed example 
shows how a workflow is created with Wings and Pegasus and includes pointers to the 
ontologies, component models, and metadata representations for a workflow template, a 
workflow instance, a DAX, and an executable workflow.  
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The Wings/Pegasus workflow system was used to conduct the SR-6 demonstration, 
six months into the program.  
 
 
 
2.3 Middleware Services Used by the Workflow System  
 
The Workflow System uses the following middleware services shown in Figure 2. 
 

• Condor Batch System: Condor is used on the Submit node 
(http://cs.wisc.edu/condor) by the Ensemble Manager to co-ordinate the 
generation, planning, and execution of multiple requests and workflows across the 
various nodes of the TanGrid. 

 
• Globus GRAM2 Gatekeeper: The Globus Gram2 Gatekeeper and batch 

scheduler specific jobmanagers (jobmanager-condor or jobmanager-pbss) from 
the Globus Toolkit (http://www.globus.org) are installed  on the head nodes of the 
cluster for allowing job submission from remote machines to the local batch 
scheduler on the cluster.  

 
• Globus Gridftp Server: The Gridftp server from the Globus Toolkit is installed  

on the head node of a cluster. This server enables high speed and efficient data 
transfers of large datastets across the TanGrid. This service is used for any kind of 
data transfer required for execution of the workflows. 

 
• Local Batch System:  Condor or batch systems are installed on the cluster nodes 

to allow job scheduling within the cluster. These batch systems enable sharing of 
the resources by multiple users and support prioritization of jobs, wall-time, etc. 

 
• Allegro Graph Server: Franz’s Allegro Lisp and Allegro Graph Server products 

are used for storing the data in triple form in the Allegro Graph Knowledge Base. 
 

• MySQL Database: A MySQL relational database management system is used on 
the Tangrid to store status information generated while executing the Workflows 
via the Ensemble Manager. Also the MySQL Database maintains a Pattern 
Registry that is used by Pegasus to retrieve locations of patterns to be used for the 
workflows. 

 
• Ganglia Monitoring: Ganglia Monitoring probes are installed on each node on 

the cluster which publish monitoring information like load, cpu usage, memory 
usage, network usage and other such statistics including historical information. 
This information is aggregated for each cluster and published to a central 
publishing site at http://wind.isi.edu/ganglia. 

 

http://cs.wisc.edu/condor
http://www.globus.org
http://wind.isi.edu/ganglia


 7

• Nagios Monitoring and Testing: Nagios Monitoring and Testing framework is 
installed on one of the TanGrid Nodes. Its function is to run various testing probes 
repeatedly at a fixed interval in order to test the health of the TanGrid nodes and 
services. The Nagios monitoring page can be seen at 
https://artemis.stdc.com/nagios2/ 

  
 

 
Figure 2: Middleware Services for the Workflow System 

 
2.4 Workflow Execution Facilities 
 
SR  has provided two clusters at Information Sciences Institute (ISI) to be used as 
Workflow Execution Facilities. Additionally each group has a Submit node installed at 
their site. The two clusters at ISI used for execution are described below. 
 
VIZ Cluster: 

• 1 Linux Head Node   
o Dual CPU, Dual Core Xeon 2.4Ghz (32 bit) 
o 2GB Memory 
o Gigabit Ethernet 
o 150Gbs of shared storage 
o Debian 3.1 Linux 
o PBS Batch System 

•  8 Linux Cluster Nodes each with  
o Dual CPU, Dual Core Xeon 2.4Ghz (32 bit) 

https://artemis.stdc.com/nagios2/
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o 2GB Memory 
o Gigabit Ethernet 
o 150Gbs of shared storage 
o Debian 3.1 Linux 

 
WIND Cluster: 

• 1 Linux Head Node 
o Dual CPU, Dual Core Xeon 2.3 Ghz (64 bit) 
o 8 GB Memory 
o Gig Ethernet 
o 7Tb of shared storage 
o Fedora Core 7 
o Condor Batch System 

• 5 Linux Cluster Node 
o Dual CPU, Dual Core Xeon 2.13 Ghz (64 bit) 
o 4 GB Memory 
o Gig Ethernet 
o 7Tb of shared storage 
o Fedora Core 7 

• 1 Windows Cluster Node 
o Pentium 4 2 Ghz (32 bit) 
o 1 GB Memory 
o 100Mbps Ethernet 
o Windows Xp SP2 

 

3. RESEARCH RESULTS 

SR’s work under this program covered three major research areas: automatic workflow 
generation, workflow ranking, and managing execution of multiple workflows.   
 
3.1 Automatic Workflow Generation 
  
Computational workflows are a powerful paradigm to represent and manage complex 
applications, particularly in large-scale distributed data analysis.  Workflows represent 
application components that result in individual computations as well as their 
interdependencies in terms of data flow.  Workflow systems use these representations to 
manage various aspects of workflow creation and execution for users, such as the 
automatic assignment of execution resources.   

SR’s research on workflow generation provides an approach to automating a new 
aspect of the process: the selection of application components and data sources. We 
present a formalization of the problem and an algorithm that elaborates the high-level 
template into a set of fully ground workflows with specific choices of data sources and 
codes to be used so that they can be submitted for mapping and execution. The algorithm 
starts from a user-specified request that includes a high-level workflow template and any 
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additional constraints on results or data sources.  It searches through the space of possible 
candidate workflows by creating increasingly more specialized versions of the original 
template and eliminating candidates that violate constraints as components and data 
sources are selected.   

Figure 3 shows an overview of the distinct stages during workflow generation.  A 
pool of workflow candidates are formed from the initial request. Each stage adds 
increasingly more detail to each candidate workflow until they are ready to be submitted 
to the workflow mapping and execution engine. In this process candidate workflows can 
be added or eliminated. If at any point there are no workflow candidates remaining, the 
algorithm ends returning an empty result.  

The initial request is assumed to contain template/seed pairs that are each well-
formed and unified with the template variables. In the first stage, a seeded workflow is 
created from each template/seed pair by merging the seed with the workflow template 
constraints.  These seeded workflows are considered to be the initial pool of candidate 
workflows. The next stage propagates constraints from the workflow outputs to the 
workflow inputs to create binding-ready workflows.  Next, input data sources that satisfy 
the constraints imposed by the workflow are found to create a pool of candidate bound 
workflows.  In the next stage, the properties of input data sources are propagated through 
each component, resulting in configured workflows.  Finally, unique identifiers for 
workflow data products are obtained to create workflow instances, and specific command 
invocations are associated with each workflow component to create ground workflows.  
Finally, the candidate workflows are ranked and the k-best candidates are submitted to 
the workflow mapping and execution engine.  The detailed individual steps are described 
in Section 3.1.3. 

Our algorithms assume a distributed architecture where data and process (component) 
catalogs are separate from the workflow system.  To function in such a distributed 
architecture, the algorithm explicitly poses queries to external catalogs, and therefore any 
reasoning regarding data or component properties is not assumed to occur within the 
workflow system.  To illustrate our approach, for simplicity, we use workflows 
composed of machine learning algorithms as components from the well-known Weka 
library and datasets from the widely-used Irvine repository. We also show our 
implementation using the W3C Web Ontology Language (OWL) and associated 
reasoners to implement the workflow system as well as the data and process catalogs.  
This research demonstrates the use of artificial intelligence techniques to support the 
kinds of automation envisioned by the intelligence community for large-scale distributed 
data analysis. 

3.1.1 Data, Components, Workflows, and Workflow Requests: Requirements and 
Examples 

Data 

Data objects have metadata properties, which are used to describe useful features of the 
data.  An example metadata property is the size of a datasets, and whether the data is 
continuous or discrete.  Metadata properties can specify the type of the data, for example 
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whether they are instances or models, and for models whether they are a decision tree 
model or a Bayes model.   
 
____________________________________________________________________________________ 

____________________________________________________________________________________ 
 

 
 

Seed workflow from request

unified well-formed request

Find input data requirements

seeded workflows

Data source selection

binding-ready workflows

Parameter selection

bound workflows

Workflow ranking

specialized configured elaborated workflows

Workflow instantiation

specialized configured elaborated workflows

Workflow grounding

Workflow instances

ground workflows

Figure 3:  Stages During Workflow Generation 
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Table 1: Representation of Abstract and Concrete Workflow Components 
(a) Abstract Component 
 
Component ID: DecTreeModeler 
                           is Abstract 
Input:  d: Dataset  
                        hasSize s:Size 
Params: i: ClassIndex 
              j: maxJavaHeapSize 
                 j <- 256x rem(s/1000) 
Output:  o: Model is DecTree 

(b) Concrete Components 
 
Component ID: ID3-Modeler        Component ID: Lmt-Modeler  
                is DecTreeModeler                                   is DecTreeModeler 
                is Concrete                                               is Concrete 
Input:  d: Dataset is Discrete        Input:  d: Dataset is NoMissingVals 
Params: i: ClassIndex                   Params: i: ClassIndex 
             j: maxJavaHeapSize                     j: maxJavaHeapSize 
Output:  o: DecTree-Model          Output:  o: DecTree-Model  
 

 
Concrete components correspond to executable codes, abstract components 

correspond to classes of components with common general properties.  An 
important requirement is the ability to describe new workflow data products since 
we need to be able to refer to data objects that do not yet exist and that will only 
exist once the workflow is executed.  In addition, we need to anticipate the metadata 
properties of those objects.  We refer to this as the projected metadata for a data 
object. For example, if the training dataset is of a particular kind or domain, such as 
weather data, then we can state that the model learned is also for weather data and 
that the classifier is expected to operate on test data that are also weather data.  To 
support this, we need to be able to state not only that the domain of the training data 
(e.g., weather) must be the same as the domain for the given test data, but also to 
state or infer that the learned model is of that same domain (e.g., also weather).  
Notice that the projected metadata for a data object may be different than the actual 
metadata obtained once the data object is created.  For example, we can anticipate 
that a learned model for a training set of 1,000 instances will have 25 rules, but the 
actual learned model may end up containing exactly 26 rules.  The data catalogs 
need to handle the fact that these new projected data products may never 
materialize, either because the workflow will not be selected for execution (in favor 
of other alternatives) or because the execution of the workflow may fail.   

 
Representing workflows requires being able to represent statements about data 

objects that include the ability to:  
1) refer to the data objects that will be used as input data,  
2) attach properties to those data objects,  
3) state relations among properties of different data objects,  
4) refer to new workflow data products and their properties 

 
Components 
 
Components often require representing properties of their input or output data. For 
example, that a component that discretizes a dataset has as output a dataset that is discrete 
(instead of continuous data).   Components have argument identifiers that enable the 
workflow system to refer to particular arguments of the component.  For example, the 
component ID3-Modeler has an input dataset whose identifier is “d”.  

Components in a component catalog may be abstract or concrete. Concrete 
components model pieces of software that can actually be executed while abstract 
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components are descriptions of the common features of a set of concrete components, in 
a similar sense to the way an abstract class in object-oriented programming gathers the 
commonalities of its subclasses.  Table 1(a) shows an example of an abstract component, 
which represents all common properties of decision tree modelers such as the output is in 
the form of a decision tree.  Table 1(b) shows two examples of concrete components.  
The ID3-Modeler requires input data that are discrete, while the LMT-Modeler requires the 
training examples used as input to have no missing values for their features.  The abstract 
component illustrates how the value of a metadata property of an input dataset (s) is used 
to set the value of a parameter (h). 

We have the following requirements for representing components:  
1) represent input data, parameters, and output data in each with a unique argument 

identifier,  
2) represent constraints on the values that arguments can take, including type,  
3) represent constraints across argument values,  
4) represent classes of components based on common properties, and  
5) ability to generate an appropriate invocation command. 

 
Workflows 
 
Workflows have complementary representations of structure and constraints.  The 
structure of a workflow reflects the dataflow among components, while the constraints 
reflect interactions among components and datasets.  We explain now both aspects of the 
representation in more detail.  

The structure of a workflow is specified as a set of nodes, each corresponding to a 
component, and a set of links that reflect the dataflow across components. For simplicity, 
we use links to specify input and output data and refer to them as input and output links, 
with an empty origin node and an empty destination node respectively.  Similarly, we use 
parameter links for parameters, and give them an empty origin node.  All other links are 
in-out links and include both an origin and a destination node.   

Figure 4 shows a representation of a workflow. The dotted ovals and the dotted lines 
represent workflow nodes and links respectively. The ModelerThenClassifier workflow 
consists of two nodes (modelerNode with Modeler component and ClassifierNode with 
Classifier component), two input links (for modelerTrainingData and classifierInputData), two 
parameter links (for javaMaxHeapSize and modelerClassIndex), one in-out link (for 
outputModel and classifierInputModel), and one output link (for classifierOutput). In this 
workflow, there are several data variables shown. One is TrainingDataVariable, which 
refers to the input data that will be used as training data and can be bound to any data sets 
available.  Another data variable is ModelDataVariable, which refers to the data product 
generated after the Modeler component will be executed.  The workflow in the figure is 
variabilized, and its input data variables can be bound to many possible combinations of 
data inputs. Links specify which argument identifier of the component is associated with 
the link. In Figure 4, the argument identifiers are shown next to the solid arrows inside 
the nodes.  For example, the learned model corresponds to the “m” argument id of the 
Classifier component.  We include here a parameter that is used in the Weka 
implementation and that specifies the allocation of memory to be used (indicated with a 
“j” argument identifier on both components) and should be set in proportion to the size of 
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the input data sets.  We will use this parameter in later sections to illustrate how the 
components can be automatically configured during workflow generation. 
________________________________________________________________________ 
Workflow Structure: 

 
 
Workflow Constraints: 

TrainingDataVariable ≠ TestDataVariable 
Domain of TrainingDataVariable = Domain of TestDataVariable 

 
 The nodes are shown in dashed ovals, links are shown in dotted arrows.  The top illustrates the 
representation of the structure of the workflow, the bottom shows the constraints of the workflow.  
 
 
  

Modeler

d j

o

ModelerNode

i

TrainingDataVariable ClassIndexParameterVar

maxJavaHeapSizeModelerParameterVar

Classifier

d j

o

ClassifierNode

m

TestDataVariable ModelDataVariable

maxJavaHeapSizeClassifierParameterVar

ClassificationDataVariable

Legend

node

Variable

Link

ArgumentID

component

Figure 4: The representation of a Workflow to learn a model and then classify data.
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Workflow Structure: 
 

 
 
 
 
Workflow Constraints: 

TestDataVariable has Domain = weather 
Training DataVariable = Weather-SM-2007-Data.csv 
SamplingIntervalParameterVar = 20 
ClassIndexParameterVar = 5 
TrainingDataVariable ≠ TestDataVariable 
Domain of TrainingDataVariable = Domain of TestDataVariable 

 
The training data is sampled first at a set rate.  The workflow constraints specify bindings of data 
variables as well as parameter settings.  Workflow constraints also express a restriction on the test 
dataset that it contains weather data, which avoids incorrect use of the workflow with other kinds 
of data. 

  
 
 

Weather-SM-2007-Data. csv

ID3-Modeler
d j

o
ModelerNode

i

maxJavaHeapSizeModelerParameterVar

ID3-Classifier
d j

o
ClassifierNode

m

TestDataVariable

maxJavaHeapSizeClassifierParameterVar
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d
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k
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Variable
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Figure 5: A workflow to learn a model to predict weather 
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In our work, the structure of a workflow is constrained to be a directed acyclic graph 

(DAG).  This is a very simple structure that we have found very useful in many fronts: 
including hiding programming constructs from users, facilitating reasoning about 
workflows (in particular automatic workflow generation), and last but not least recovery 
of execution when a job fails in the middle of the workflow.  Many workflow languages 
depart from this basic structure and enable constructs such as conditionals and iterations 
through global variables.  Using DAGs, we are able to support simple forms of iteration 
over data collections, as well as conditional execution based on data types [Gil et al 07a].  
We have found this structure to be very manageable and to cover what was needed for a 
wide range of applications.  

Figure 5 shows another example of a workflow customized to learn to predict weather 
data.  This is a workflow that has data objects assigned to some of the data variables and 
values assigned to some of the parameters, both done through the workflow constraints.  
This workflow also illustrates how constraints represent additional metadata properties of 
the input data.  In this case, a constraint indicates that the domain of the test dataset used 
must be weather.  This constraint will avoid the incorrect use of this workflow to make 
predictions over non-weather data.  

The representation of the structure of the workflow is essentially syntactic in nature, 
as it is concerned with having a complete specification of the direction of the dataflow for 
all the inputs and outputs of the components.  The representation of the constraints is 
semantic in nature, and is concerned with having a consistent specification of the nature 
of the data exchanged among components through the dataflow.  

In summary, to represent workflows we have the following requirements:  
1) represent dataflow across components,  
2) represent data variables that are generic placeholders for actual datasets, so we can 
have reusable workflow templates,  
3) represent constraints on data variables,  
4) represent constraints across data variables, and  
5) represent different degrees of generality in the workflows, including bindings for input 
datasets and values for parameters.  
 
Workflow Requests 
 
Our goal is to automatically generate responses for a variety of requests from users by 
generating and executing workflows that satisfy the requests.  Users may specify a 
variety of criteria in the requests, such as:  

• Functional properties: Users often want to use workflows based on the nature of 
the computations performed or the desired data products.  These include: 

o component-centered properties that refer to the kinds of computations 
performed by the workflow components 
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o data-centered properties that refer to desired data products, or that specify 
that a certain type of data of interest to the user must be used in the 
workflow. 

Example of output data properties: Create a Naïve Bayes model of labor data. 
Example of input data properties: Classify iris data using a naive-bayes model with three classification classes 

and created from at least 500 instances.    
Example of component properties: Create a model of labor data using ID3. 
Example of component properties: Create a model of labor data with no sampling steps in the workflow (i.e., 

using the complete training data set).   
• Structural properties:  Users may provide constraints on the structural composition 

of the workflow concerning the relative ordering of steps. For example, a user may 
seek a workflow that performs data aggregation on a collection of datasets before 
performing clustering operations.  

Example: Sample soybean data and then create a Naïve Bayes model. 
Example: Use ModelThenClassify workflow with soybean data. 

• Non-functional properties: These properties express user requirements regarding 
workflow performance and other costs.  We highlight two here: 

o Execution time: A desired turnaround time for obtaining results. 
o Result quality:  A threshold of quality or accuracy measured in some 

domain-relevant metric.  
Because some of these requirements may be in conflict, users may state additional 
combination functions or preferences.  For example, there is typically a tradeoff 
between execution time and result quality, where shorter time often implies a 
lower quality results.  A combination function may be expressed in the request 
when both time and quality matter. 

Example: Create a model of soybean data with maximum accuracy. 
Example: Classify iris data and minimize the response time. 

• Resource properties:  Users may have specific requirements about the execution 
resources to be used in executing the workflow.  For example, for a workflow 
designed to compare the performance of a set of algorithms the user may request 
that all the algorithms may be executed on the same target architecture, or that the 
datasets used should be those existing at specific locations.  Users may also 
request that specific resources should not be used, such as datasets generated by 
prior workflow executions or datasets that have not been updated for some period 
of time. 

• Cumulative properties:  These are properties of workflows that are derived through 
usage.  Users may prefer to use workflows that are most frequently used by a user 
group, or more popular for a given function. 

Example: Create a model for soybean data using the most popular decision tree modeler. 
• Comparative properties:  Properties that are derived by comparing across possible 

candidate workflows.  These can be used as ranking functions that drive the 
selection of workflows that have higher ranking. 

Example: Create a model for soybean data with minimum description length.   
In our work, users always specify a workflow template to be used in combination 

with a seed that specifies additional constraints.  The seed can specify constraints on the 
inputs, outputs or intermediate data variables, as well as requirements on particular 



 17

components, data objects or parameter values to be used. The workflow template 
essentially specifies functional or structural requirements that users have. In general, 
scientific applications and data analysis applications are run with a specific workflow 
structure or template in mind [Gil 06].   

An example of a request is one to create a classification of a weather data object (i.e. 
the domain of the classifierOutput is weather) using the ModelerThenClassifier workflow 
(shown in Figure 4), with a value of 5 for the “i” parameter of the Modeler step.  

If a workflow request did not include a workflow template, the seed can be used to 
search for relevant workflows in the library that could be used to accomplish the request. 
Matching requests and workflow templates is a unification problem [Baader and 
Narendran 01].  There is a large body of work on matching in the case-based reasoning 
literature [Ashley and Aleven 97; Bergmann and Stahl 98; Champin and Solnon 03; 
Forbus et al 94] as well as in matching in first-order and in description logic [Li and 
Horrocks 03; Baader et al 05; Hull et al 06].  Graph matching techniques have been used 
to retrieve workflows based on structural properties [Goderis et al 06]. End users, 
however, will most often formulate their requests based on domain-relevant features of 
the workflow rather than referring to the implementation details of the software artifacts 
described in our current workflow representations.  Therefore, ideally each workflow and 
data product would be described in terms of domain-relevant models in addition to 
software-level descriptions.  

Another alternative to responding to a workflow request that does not include a 
template is to use a generative search algorithm to generate a workflow by selecting one 
component at a time using the seed as a goal statement [Blythe et al 04a; Blythe et al 
04b].  However, those approaches require very detailed models of the components in 
order to support composition.  We assume that a workflow request is formed by a 
workflow template and a seed that specifies additional constraints.   

In summary, in order to satisfy the requirements in user requests, we need to be able 
to:  

1) represent properties of desired input and output data,  
2) merge the retrieved templates with the requirements expressed in the request , and 
3) propagate the effects that the requirements expressed in the request pose on other 

components and datasets of the workflows being considered. 

 

3.1.2 Formalization 
 

This section shows a formalization of our framework to satisfy the above requirements.  
The formalization describes how the workflow system can model data, components, and 
workflows.  We also show the basic functions that the workflow system needs in order to 
access external data, component, and workflow catalogs.  Although our own 
implementation uses a particular representation formalism, we use a more general 
formalization here using algebraic specification [Liskov and Guttag 86].  We show later 
our implementation of this formalization.  
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Data and Data Catalogs: Formalization 
 
To refer to data objects relevant to a workflow we use the term data entities.  Data 
entities can be an existing initial dataset, a workflow data variable, a component 
parameter, and a specific workflow data product.  

We use the term data object description (DOD) to refer to a set of metadata 
annotations that describe the properties of a given data object.  DODs for input data 
variables effectively constrain the possible input data that can be used to bind the data 
variables standing for data objects. DODs for component parameters can be used to 
constrain the values that the parameter can take, and to specify the value of a component 
parameter.  

In our work we use a particular representation formalism (first-order logic).  
However, we wish to make our framework very general and applicable to alternative 
formalisms.  Therefore, without actually committing to any formalism for DODs, we 
assume that the chosen formalism allows writing literal annotations and literal relational 
annotations as defined below.  

Formally, we assume: 
• E as the set of data entities in the workflow,  
• P as the set of metadata properties,  
• τ(p) is the set of possible values for a metadata property p∈ P 
• V as the set of possible values of the component parameters  
• R as the set of relations between pairs of property values,  

Given E, P, and R, we assume that the DOD formalism allows expressing: 
— literal DODs to specify the value of a metadata property for a given object as:  

〈 e, p, v 〉  
where e ∈ E, p ∈ P, v ∈ τ(p). 
Example: For the workflow shown in Figure 5,  <TestDataVariable, has Domain, weather> 
 

— literal relational DODs to specify a relation between the values of two properties 
of the same or different data objects as: 
〈 r, e1, [p11, ... , p1n], e2, [p21, ... , p2m] 〉 
where e1, e2 ∈ E, p11, ... , p1n, p21, ... , p2m ∈ P, r ∈ R, and n, m ≥ 1 
Representing that relation r holds between the value at the end of the property 
chain p11, ... , p1n starting in e1 and the value at the end of the property chain p21, 
... , p2m starting in e2. Formally: 
∃ x1, ... , xn, y1, ..., ym such that 
〈 e1, p11, x1 〉 ∧ ... ∧ 〈 xn-1, p1n, xn 〉 ∧ 〈 e2, p21, y1 〉 ∧ ... ∧ 〈 ym-1, p2m, ym 〉 and 
r(xn, ym) 
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Example:   To add a restriction in the workflow in Figure 5 that it can only be used to make predictions with 
weather data that is from the same county as the training data, we can state: 

             <equals, TestDataVariable, [ has-area, has-county], TrainingDataVariable, [has-area, has-county]> 

 which represents that: 
< TestDataVariable, has-area, A1> 
<A1, has-county, C1> 
< TrainingDataVariable has-area A2> 
<A2, has-county, C2> 
<C1, equals, C2> 

 
With these representations for DODs, we can represent workflow constraints.  For 

example, the workflow constraints shown in Figure 5 can be expressed as the set of 
DODs:  
 

             M3= {<TestDataVariable, hasDomain, weather> 
        <TrainingDataVariable, has-value, Weather-SM-2007-Data > 
       < SamplingIntervalParameterVar, has-value, 20 > 

         < ClassIndexParameterVar, has-value, 5> 
         <not-equal, TrainingDataVariable, [has-value], TestDataVariable, [has-value]>} 

  
We denote as M(E) a set of metadata annotations that only refer to entities in the set E 

and as E(M) the set of entities referred in the set M of annotations. We now describe the 
functions that implement this notation. We assume that the formalism for metadata 
allows us to build a function that implements M(E) to retrieve the subset of DODs that 
only refer to a set of given entities E, and a function that implements E(M) as follows:  

— entity-DODs: E M → M 
which returns a subset of the given set of DODs that only refer to the given set of 
entities. Formally, if MA is a set of DODs: 
entity-DODs( V, MA ) ⊆ MA, and E(entity-DODs( V, MA )) ⊆ V 

Example: entity-DODs ({TestDataVariable TrainingDataVariable}, M3)  ≡ 
                      {<TestDataVariable, hasDomain, weather> 

        <TrainingDataVariable, has-value, Weather-SM-2007-Data > 
                                       <not-equal, TrainingDataVariable, [has-value], TestDataVariable, [has-value]>} 

— get-entities-in-DODs: M → E 

Example: get-entities-in-DODs(M3)  ≡ { TestDataVariable TrainingDataVariable  
 SamplingIntervalParameterVar  ClassIndexParameterVar } 

Note that M and E are the types of all DODs and all entities respectively, and V and 
MA are the values for a specific call to the function.  

With these definitions, we can now formalize the functions that a data catalog must 
be able to support.  A data catalog must include functions to retrieve data objects given 
their DODs.  In addition, it must provide a function to combine sets of DODs and to warn 
when they are not possible to combine (we will illustrate the need for this in the 
workflow generation algorithm below).   
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Given a set D of data object identifiers contained in the data catalog DC, and denoting 
as Vars a set of workflow data variables that can be annotated with DODs, we can define 
the following functions: 

— obtain-DODs: D → M 
Return as a DOD all the metadata properties and values of the given data object 
identifier. 

— assign-identifier: M → D 
Assigns a unique identifier based on a given set of metadata properties and values. 

— assert-predicted-DODs: DC M D → DC 
Register in the data catalog all the predicted metadata properties and values of the 
given data object identifier. 

— find-data-objects: M(Vars) → { { 〈 Vars × D 〉 } } 
Given an input set of DODs for several data variables, return a (possibly empty) 
set of data objects for all the variables in the input DODs that are consistent with 
the DODs. Each tuple of the form 〈 Vars × D 〉 is a binding for a workflow data 
variable, where a variable is bound to a data object identifier. 

— combine-DODs: M(Vars) M(Vars) → M(Vars) 
Return a set of DODs which combines the metadata properties of two given sets, 
all of them on a given set of variables. 
In order to be valid, an invocation to combine-DODs must verify that the sets are 
consistent. 
 

Components and Component Catalogs: Formalization 
 
In order to support the workflow selection and execution process, a component catalog 
may include different functions to extract knowledge about the components out of the 
catalog.  

We assume: 
• a set C of components in the catalog. We refer to AC and CC as the disjoint 

subsets of C for abstract and concrete components respectively. 
• a set I of unique identifiers for each argument of the components (input data, input 

parameters, and output data) 
 

We can define the following basic functions for the component catalog:  
— inputs: C  → I 

Return the identifiers for the input data objects of a component. 
— parameters: C  → I 

Return the identifiers for the parameters of a component. 
— outputs: C  → I 

Return the identifiers for the outputs of a component. 
— args: We denote as args(c) the set of arguments of a component c ∈ C: 
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args(c) ≡ inputs(c) ∪ parameters(c) ∪ outputs(c)  
— invocation-command: CC 〈 D ×  ... × D 〉 〈 V ×  ... × V 〉 → String 

Return the invocation command for a concrete component, given the values (data 
object identifiers) for its inputs and the values for its parameters. 

When the component library supports these functions for a component, and the 
invocation command results in a successful invocation and execution of the component, 
we consider the library to contain a basic component encapsulation.  Supporting this 
basic encapsulation of the underlying code does not require a component library to 
include semantic constraints or properties of data or components. 

When a component catalog includes both abstract and concrete components, it 
needs to support the following functions: 

— is-concrete: C → Bool 
Determine whether a component c is abstract or concrete.  

— specialize: AC M(I) → { C } 
Return a (possibly empty) set of abstract or concrete components that can 
specialize a given abstract component using a given set of DODs on the abstract 
component arguments. We assume that there is a one-to-one mapping between the 
arguments of each of the concrete components returned and the arguments of the 
abstract one.  When this is not the case, there must be provisions for extending the 
workflow to account for the additional arguments, possibly to link them to data 
variables in the workflow, and possibly to add workflow components to the 
workflow to generate some of the additional arguments. 
In order to be valid, an invocation of specialize(c, M) must verify that DODs in M 
only refer to the arguments of c: E(M) ⊆ args(c). 

— specialize-to-concrete: AC M(I) → { CC } 
 

Similar to specialize but returns only concrete components rather than subclasses.  

The next functions support the automatic setting of parameters for a given 
component.  When the component library supports these functions, we refer to the 
component as self-configurable.  The functions are defined as follows: 

— is-configurable: C M(I) → Bool 
Determine whether the parameter values for the component can be obtained from 
the component catalog given a set of DODs on the component arguments.  Notice 
that this does not set the values of any parameters, it simply checks that they can 
be set by the component catalog. 

— configure: C M(I) → { 〈 V ×  ... × V 〉 } 
Return a set of tuples, each tuple specifying values for all the parameters of a 
component c given a set of DODs on the component arguments (inputs, outputs 
and parameters). 
In order to be valid, an invocation of configure(c, M) must first verify that: 

• DODs in M only refer to the arguments of c: E(M) ⊆ args(c), and  
• is-configurable(c, M) returns true. 
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— is-configured: C M(I) → Bool 
Determine whether a component c is fully configurable based on a given set of 
DODs on the component arguments.  

 
We define two additional functions that component catalogs can provide in order to 

support workflow generation: 
— find-DODs-given-output-requirements: CC M(I) → { M(I) } 

Return additional metadata properties on the concrete component arguments using 
the given DODs. 
In order to be valid, an invocation find-DODs-given-output-requirements (c, M) 
must comply with:  

 DODs in M only refer to the arguments of c:  
E(M) ⊆ args(c) 

 M includes some annotations on the outputs of c:  
E(M) ∩ outputs(c) ≠ ∅ 

Ex: find-DODs-given-output-requirements(ID3-Classifier,<ID3-Classifier-o hasDomain Weather>)  
→ { < ID3-Classifier-d hasDomain Weather>} 

— predict-DODs-given-input-requirements: CC M(I) → M(I) 
Return additional metadata properties on the concrete component arguments using 
the given DODs. 
In order to be valid, an invocation predict-DODs-given-input-requirements (c, M) 
must comply with:  

 DODs in M only refer to the arguments of c:  
E(M) ⊆ args(c) 

 M includes some annotations on the inputs of c:  
E(M) ∩ inputs(c) ≠ ∅ 

Ex: predict-DODs-given-input-requirements(ID3-Classifier, 
 <ID3-Classifier-d has-value weather-2007-31-101501>)  

           → {< ID3-Classifier-d number-of-instances 100>,  
                                        < ID3-Classifier-j has-value “512M”>} 

 

When a component library supports the first function for a given component, we refer 
to the component as backward-enabled.  The function is used to propagate through the 
workflow structure any constraints required from the output data products.  When the 
second function is supported, we refer to the component as forward-enabled.  This 
function is used to propagate through the workflow structure any properties of the input 
data.  We also have functions to check whether the component representations in the 
catalog support these capabilities as follows:  

— is-backward-enabled: C → Bool 
The function find-DODs-given-output-requirements is defined for the 
component. 

— is-forward-enabled: C → Bool 
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The function predict-DODs-given-input-requirements is defined for the 
component. 

Finally, a function to estimate the performance of a component: 
 
— estimate-performance: C M(I) 〈 V ×  ... × V 〉 A → T 

Return estimated performance T as time of execution for the component for the 
given metadata and parameter values.  The performance is estimated for a given 
reference architecture A.   
In order to be valid, an invocation estimate-performance (c, M,v) must comply 
with:  

 DODs in M only refer to the arguments of c:  
E(M) ⊆ args(c) 

 M includes some annotations on the inputs of c:  
E(M) ∩ inputs(c) ≠ ∅ 

 is-concrete(c) returns true 
 is-configured(c, M) returns true 

Later, we will show how all these functions are used during workflow generation. 

 

Workflows 
 
Given a component catalog which includes a set C of components, a data catalog with a 
set D of data object identifiers, a set V of possible values for component parameters and a 
set P of metadata properties, a workflow w is defined as a tuple of nodes, component to 
node mappings, data variables, parameter variables, DODs on data and parameter 
variables, data links, parameter links, data bindings, and parameter bindings. Formally, a 
workflow is specified as a tuple:  

〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉  
 

where: 
 Nw  is the set of nodes in the workflow, 
 σw is a mapping function that associate a component to a node: 

σw : Nw → C 
Note that different nodes in the workflow may have the same associated 

component. 
 DVw is the set of data variables in the workflow 
 PVw is the set of parameter variables in the workflow. 
 Mw, is DODs on the data and parameter variables of the workflow: E(Mw) ⊆ 

DVw ∪ PVw 
 Lw, is the set of links in the workflow. A link l is represented as a tuple of the 

form:  
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〈 no, o, v, nd, i 〉  
where no, nd ∈ Nw ∪ {⊥}, o ∈ outputs(σ(no)) ∪ {⊥}, v ∈ DVw ∪ PVw,  and i 

∈ inputs(σ(nd)) ∪ {⊥}. 
We refer to no as the origin and to nd as the destination. 
An input link to the workflow is one without origin that connects a data 

variable to an input argument of a component: 〈 ⊥, ⊥, v, nd, i 〉 v ∈ DVw, while 
an output link is one without destination that connects an output argument to a 
data variable: 〈 no, o, v, ⊥, ⊥ 〉 v ∈ DVw. 

 PLw, is the set of parameter links in the workflow. A parameter link pl is 
represented as a tuple of the form:  

〈 pv, n, p 〉  
where pv ∈ PVw, n ∈ Nw, and p ∈ parameters(σw(n)).   

 DVBw is a, possibly empty, set of bindings of the data variables to data object 
identifiers:  

〈 dv, d 〉 ≡ 〈 dv, has-value, d 〉 
where dv ∈ DVw, d ∈ D 

 PVBw is a, possibly empty, set of bindings of the parameter variables to 
values:  

〈 pv, v 〉 ≡ 〈 pv, has-value, v 〉 
pv ∈ PVw, v ∈ V 

 
The parameter link indicates which parameter variable in the component corresponds 

to the link.  No values are set to parameters in parameter links, instead the values are set 
through the parameter bindings.  

Workflow catalogs should contain workflows that comply with the basic component 
encapsulation requirements for all of its nodes’ components.  That is, all the arguments 
and argument identifiers specified in the workflow nodes and links have a one-to-one 
correspondence with the arguments and argument identifiers defined for the nodes’ 
components.  We refer to such workflows as well-formed workflows.  This is a syntactic 
property concerning the structure of the workflows, and does not concern the constraints 
or properties that may be defined for data variables or data objects. 
 

We define the following types of workflows:  
— Specialized workflow: 

A workflow which contains only concrete components. 
Formally, a workflow 〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉 where 

 ∀ c ∈ Cw : isConcrete(c) 
where Cw denotes the set of components in the workflow: 

Cw ≡ { c ∈ C | ∃ n ∈ Nw : σw(n) = c } 
 
— Bound workflow: 
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A workflow whose input data variables are bound to data objects identifiers 
registered in the data catalog. 
Formally, a workflow 〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉 where 

 ∀ dv ∈ DVi that is an input data variable  ∃ d ∈ D :  〈 dv, d 〉 ∈ 
DVBw 

where DVi denotes the set of input data variables in the workflow: 
DVi ≡ { dv ∈ DVw | ∃ n ∈ Nw : ∃ i ∈ I : 〈 ⊥, ⊥, dv, n, i 〉 ∈ Lw } 

 
— Configured workflow: 

A workflow where all the parameters of its components have been assigned 
values. 
Formally, a workflow 〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉 where: 

 ∀ pv ∈ PVw : ∃ v ∈ V :  〈 pv, v 〉 ∈ PVBw 
 
— Ground workflow: 

A workflow where all the data variables in the workflow have been assigned data 
object identifiers. 
Formally, a workflow 〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉 where: 

 ∀ dv ∈ DVw : ∃ d ∈ D :  〈 dv, d 〉 ∈ DVBw 
 
With these definitions at hand, we can make the following distinction:  

— Workflow instance. 
A specialized bound workflow which is also configured. A ground workflow is a 
special case of workflow instance where all data variables are bound to data 
objects with assigned identifiers. 

— Workflow template. 
Any workflow that is not a workflow instance.  

 
The workflow in Figure 4 is not specialized, since both nodes contain abstract 

components.  It is partially bound, since it has a binding for the training data variable but 
not for the test data variable.  It is partially configured, since only some of its parameter 
variables have been assigned values. This workflow is a workflow template, and we will 
use it as a running example to show how our algorithms use it to create a workflow 
instance by specializing, binding, and configuring it.  The workflow in Figure 5 is 
specialized, partially bound, and partially configured.  

A workflow library containing reusable workflows can include any kind of workflow 
template, whether they are fully or partially specialized, bound, or configured. Different 
kinds of workflow templates can be reused for different purposes.  For example, a fully 
configured workflow can be reused to process different datasets, while a fully bound 
workflow can be reused to explore alternative parameter settings. 

In contrast with workflow templates, workflow instances are fully specified in terms 
of data, parameters, and components to be used.  Therefore, workflow instances can be 
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submitted to a workflow mapping and execution engine to be mapped to available 
execution resources and to be subsequently executed.   

In order to be submitted to the workflow mapping and execution system, workflow 
instances need to have unique data object identifiers for each new data product as well as 
exact command line invocations for each component.  The workflow mapping and 
execution system does not need the DODs and other constraints that may be included in 
the workflow as a result of its evolution from a workflow template to a workflow 
instance.  It only needs to have a unique identifier for each new dataset that will result 
from the execution of the workflow, specific mention of codes to be executed for each 
component, and an invocation command to invoke each component code.  We refer to 
these workflows as ground workflow instances, where only the basic structure of the 
workflow is given and no data variables or metadata are included. 

A workflow catalog can support analogous functions to component catalogs:  
 

 is-configurable(workflow) 
 configure(workflow) 
 is-backward-enabled(workflow) 
 find-DODs-given-output-requirements(workflow) 
 is-forward-enabled(workflow) 
 predict-DODs-given-input-requirements(workflow) 
 estimate-performance(workflow) 

The functions find-DODs-given-output-requirements and predict-DODs-given-input-
requirements can be used to generate requirements on inputs and predictive metadata on 
outputs respectively at the workflow level, as an alternative to finding requirements 
component by component as we will explain in detail later.   Similarly to components, we 
refer to the workflows in the workflow catalog as self-configurable, forward-enabled, 
and backward-enabled when the corresponding functions are supported.  

Later on, we will show how these functions can be used during workflow generation.  

 

Workflow Requests: Formalization 
 
We discussed earlier a broad range of requirements that users could provide to a 
workflow system.  We focus here on particular kinds of requests, namely those where a 
workflow template is given by the user to provide functional and structural properties of 
the answer to be found by the system. Together with a workflow template from the 
library, a seed is specified that further constrains data and parameter variables.  A given 
request may contain several pairs of templates and seeds when the user would like the 
system to consider several templates as a starting point to find the solution. By specifying 
a template, the user is providing structural properties as indicated by the relative ordering 
of the steps in the template.  Also through the workflow template, the user can provide 
functional properties since the template specifies component types to be used as well as 
constraints on data variables.  
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Formally, given a workflow template library L, a component catalog C, and a data 
catalog D, a request WR is defined as a pair of a workflow template and a seed: 

 〈 wr, Sr 〉  
where wr ∈ L is a workflow template defined by a tuple  

     〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉  
and the seed Sr is defined by a tuple: 

〈 DVr, PVr, Mr, DVBr, PVBr 〉 
where: 

 DVr is a set of data variables for the seed.  A subset of these 
variables may be specified to be input variables IDVr ⊆ DVr and 
another subset may be specified to be output variables ODVr ⊆ 
DVr.   

 PVr is a set of parameter variables for the seed.  
 Mr is a (possibly empty) set of DODs using the variables in DVr  

and in PVr 
 DVBr is a (possibly empty) set of bindings of the workflow data 

variables to data object identifiers:  
〈 dv, d 〉  ≡ 〈 dv, has-value, d 〉 
dv ∈ DVr, d ∈ D 

 PVBr is a (possibly empty) set of bindings of the parameter 
variables to values:  

〈 pv, v 〉  ≡ 〈 pv, has-value, v 〉 
pv ∈ PVr, v ∈ V 

 
We use the following definitions:  

— Unified request: 
A request where the data and parameter variables in the seed correspond to the 
data and parameter variables of the workflow template specified in the request. 
Formally, DVr ⊆ DVw and PVr ⊆ PVw 

— Well-formed request: 
A request where any bindings and values in the seed for data and parameter 
variables do not overlap with the bindings specified in the workflow template. 
Formally: 

 DVBr ∩ DVBw = ∅ 
 PVBr ∩ PVBw = ∅ 

— Bound request: 
A unified well-formed request where the seed and the workflow template provide 
bindings for all the input data variables of the workflow template, and the 
bindings do not overlap. 
Formally: 
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 DVBr ∩ DVBw = ∅ 
 ∀ dv ∈ DVw then ∃ <dv, d> ∈ DVBr ∪ DVBw  

— Configured request: 
A unified well-formed request where the seed and the workflow template provide 
values for all the parameter variables of the workflow template specified in the 
request, and the value assignments do not overlap. 

 
Table 2:  Formal Representation of a Request 

_____________________________________________________________ 
<ModelerThenClassifier, {ClassificationDataVariable}, {ClassIndexParameterVar},  
  {<ClassificationDataVariable  hasDomain weather>  
   <ClassificationDataVariable  hasType Classification>}, {} 
{<ClassIndexParameterVar 5>}> 

 
 

Formally: 
 PVBr ∩ PVBw = ∅ 
 ∀ pv ∈ PVw then ∃ <pv, v> ∈ PVBr ∪ PVBw  

— Seedless request: 
A request where the seed is empty. 

 
Table 2 shows an example request specifying the workflow to be used 

(ModelerThenClassifier) and providing DODs on a data variable (ClassificationDataVariable) and 
a binding for a parameter variable (ClassIndexParameterVar).  

 
We define an additional type of workflow:  

 
— Seeded workflow, or workflow seeded with a request: 

A workflow where the DODs for the variables in the request have been combined 
with the DODs of the workflow template specified in the request, and the 
bindings and parameter values in the request have been combined with those of 
the workflow template specified in the request.  In order to create a seeded 
workflow, the request has to be unified and well-formed. 
Formally, a request with the workflow template: 

     〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉  
and the seed: 

     〈 DVr, PVr, Mr, DVBr, PVBr 〉  
results in the seeded workflow:  

  〈Nw, σw, DVw, PVw, Mn, Lw, PLw, DVBn , PVBn 〉 
where: 

  DVr ⊆ DVw 
  DVBr ∩ DVBw = ∅ 
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  PVr ⊆ PVw  
  PVBr ∩ PVBw = ∅ 
  Mn = d:combine-DODs(Mr, Mw) 
  DVBn  = DVBr ∪ DVBw 

  PVBn = PVBr ∪ PVBw 
Typically a request will contain a single template and a single seed. We generalize 

this by allowing a request to contain several template and seed pairs.  By specifying 
several templates and seeds, the user would intend to provide the system with a broader 
pool of candidate workflows to search through in generating a solution.   

If a workflow template were not specified in the request and only the seed was, the 
system would have to retrieve relevant templates from the workflow library, which would 
often result on several matching templates.  Therefore, our algorithm would be preceeded 
by a step to retrieve matching templates for the seed.  After the templates were retrieved, 
we would have a workflow request of the form considered here and our algorithms would 
take on the remainder of the process. 

The next section describes the algorithms for generating workflows from these 
workflow requests. 

3.1.3 Algorithm: Automatic Template-Based Workflow Generation 
 
The workflow generation process starts with a request containing several template/seed 
pairs.  We assume we start with a unified and well-formed request, that is, the variables 
that appear in the seed are a subset of the variables in the workflow template and any 
bindings specified in the seed do not overlap with the bindings specified in the workflow 
template.   

Throughout this section, we use the following conventions. The variables of the 
algorithm are shown in italics.  The functions shown in all capital letters are elaborated in 
later subsections.  We assume some functions have been defined with the prefixes “get-“ 
or “set-“ on workflow and request data structures to access their individual constituents.  
The function calls in boldface are functions supported by external catalogs, using c: as a 
prefix for function calls to external component services, d: for metadata services, and w: 
for workflow services.   

Since the algorithms perform function calls to external services, it includes provisions 
for function calls returning a special error code (the empty set) when there is either some 
error in the inputs to the function call or the function is undefined for those inputs.  In 
such cases, the algorithms reject the workflow being considered as a candidate.  These 
may be indications that the external catalogs may need to be extended to refine their 
models or to include additional components or data objects. 
 

Top-Level Algorithm  
Figure 3 shows an overview of the distinct stages during workflow generation.  Table 3 
describes the top-level algorithm for automatic template-based workflow generation. The 
algorithm analyzes workflow candidates at each level on a breadth-first manner, that is, 
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all candidates are elaborated before proceeding to elaborate workflows at the next level 
of detail.  A depth-first search version of the algorithm is also a possible alternative.  In 
either case, the approach we take is to generate all possible candidates, and then rank 
them to select the top choices.  This is needed because ranking candidates properly 
requires that the workflow is specialized and configured.  

The algorithm begins by creating a seeded workflow from each of the template/seed 
pair in the request.  If there were any errors seeding the workflow, due to inconsistencies 
in the definition of the seed and the template, the call to SEED-WORKFLOW would 
return an empty set and the whole procedure would be terminated.  

Next, the algorithm elaborates the workflows and in the process it will find the 
requirements on input data. For each candidate workflow, it will start from the output 
links and retrieve any additional constraints on the workflow variables that are required 
in order to produce the required output.  We refer to this process as a backward sweep.  
This is done within the algorithm BACKWARD-SWEEP, which we describe in detail 
below.  When the workflows contain abstract components, the backward sweep algorithm 
may find more specific component classes that are appropriate to satisfy the 
requirements.  When this occurs, several candidate workflows are returned. At the end of 
the backward sweep, the original DODs of the workflows have been augmented and can 
be used to find datasets that match the request and workflow requirements. We refer to 
these as binding-ready workflows.  

Now that there are as many constraints on the input data as could be uncovered in the 
backward sweep, the algorithm retrieves appropriate input data sources.  This is done by 
the algorithm SELECT-INPUT-DATA-OBJECTS, which essentially generates bindings 
for all the input data variables of the workflow that are not bound in the original request.  
Because there may be several alternative datasets that are appropriate, several alternative 
bindings may be found and in that case several candidate workflows are returned.  For 
each workflow candidate, all the properties of the input data sources that may be relevant 
to the request are incorporated into the workflow.  At the end of this process, the 
workflow candidates are all bound. 

Next, the algorithm elaborates the workflows by propagating the properties of input 
data sources through each step of the workflow.  Starting from the input links, it will 
retrieve any additional constraints on workflow variables that result from the properties 
of input data sources.  This process is called a forward sweep.  It is done with the 
algorithm FORWARD-SWEEP, which is described below. These workflows have 
augmented DODs that result from propagating the properties of the input data, and we 
refer to them as elaborated workflows.  The workflow may still contain abstract 
components, and the forward sweep algorithm would specialize them.  This results in 
several candidate workflows being returned.  The forward sweep also assigns values to 
all the parameters of the workflow components based on the constraints that are known 
for the workflow variables at each step.  At the end of this process, the workflow 
candidates are all specialized and configured in addition to being elaborated.  

Next, all the candidate workflows are ranked based on estimates of their performance.  
This ranking function only takes into account a rough estimate of the execution time of a 
component based on characteristics of the data.  It does not take into account the different 
performance across architectures or other characteristics of the execution host such as 
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memory availability.  These estimates also do not take into account how the workflow 
performance is affected by data movements, queue wait times, and other execution 
delays.  Such finer-grained estimates are produced by the workflow mapping and 
execution system and are not discussed here. The rough estimates used at this stage are 
generated by the algorithm ESTIMATE-PERFORMANCE, described below.  The k-best 
workflows are returned. 
 

Table 3:  Top-Level Algorithm for Automatic Template-Based Workflow Generation 

 

Algorithm:  TEMPLATE-BASED-WORKFLOW-GENERATION 

Input:  request  
Output: workflow-instances 

 Seed Workflows from Request 
1      seeded-workflows ← {} 
2      for each template-seed-pair ∈ request do 
3  workflows ← SEED-WORKFLOW(template-seed-pair) 
4  if (workflows ≠ null) then 
5       seeded -workflows ← seeded -workflows ∪ workflows 
6      if (seeded -workflows = null) then workflow-instances ← {}; return 

 Find Input Data Requirements  
7      binding-ready-workflows ← {} 
8      for each seeded-workflow ∈ seeded-workflows do 
9  workflows ← BACKWARD-SWEEP(seeded-workflow) 
10  if (workflows ≠ null) then 
11      binding-ready-workflows ← binding-ready-workflows ∪ workflows 
12      if (binding-ready-workflows = null) then workflow-instances ← {}; return 

 Data Source Selection 
13      bound-workflows ← {} 
14      for each binding-ready-workflow ∈ binding-ready-workflows do 
15  workflows ← SELECT-INPUT-DATA-OBJECTS(binding-ready-workflow) 
16  if (workflows ≠ null) then 
17      bound-workflows ← bound-workflows ∪ workflows 
18       if (bound-workflows = null) then workflow-instances ← {}; return 

 Parameter Selection  
19      configured-workflows ← {} 
20       for each bound-workflow ∈ bound-workflows do 
21  workflows ← FORWARD-SWEEP(bound-workflow) 
22  if (workflows ≠ null) then 
23      configured-workflows ← configured-workflows ∪  workflows 
24       if (configured-workflows = null) then workflow-instances ← {}; return 

Workflow Ranking  
25      ranked-workflows ← {} 
26       for each configured-workflow ∈ configured-workflows do 
27  workflow ← ESTIMATE-PERFORMANCE(configured-workflow) 
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28  ranked-workflows ← ranked-workflows ∪  {workflow} 
29       ranked-workflows ← select-k-best(ranked-workflows) 

Workflow Instatiation and Grounding  
30      workflow-instances ← {} ground-workflows ← {} 
31       for each ranked-workflow ∈ ranked-workflows do 
32  workflow ← INSTANTIATE-WORKFLOW(ranked-workflow) 
33              workflow-instances ← workflow-instances ∪  {workflow} 
34              ground-workflows ← GROUND-WORKFLOW(workflow) 
35       return ground-workflows 
___________________________________________________________________________________ 

 
 

Table 4:  Algorithm for Seeding a Workflow Template with the Seed Given in the 
Request 

___________________________________________________________________________________ 

Algorithm: SEED-WORKFLOW 

Input:  template-seed-pair  
Output: seeded-workflow 

1     workflow ← get-template(template-seed-pair) 
2     seed ← get-seed(template-seed-pair) 
       Combine DODs of the seed with the workflow DODs 
3     workflow-DODs ← get-DODs(workflow) 
4     seed-DODs ← get-DODs(seed) 
5     new-DODs ← d:combine-DODs(workflow-DODs, seed-DODs) 
       If the DODs are inconsistent, reject the current workflow 
6     if new-DODs = {} then 
7         workflow ← {}  
8    else  
9        set-DODs(workflow, new-DODs) 
       Combine the data variable bindings of the seed with the workflow data variable bindings 
10        workflow-data-var-bindings ← get-data-var-bindings(workflow) 
11        seed-data-var-bindings ← get-data-var-bindings(seed) 
12           new-data-var-bindings ← workflow-data-var-bindings ∪ seed- data-var-bindings 
13        set-data-var-bindings(workflow, new-data-var-bindings) 
       Combine the parameter bindings of the seed with the workflow parameter bindings 
14        workflow-par-var-bindings ← get-par-var-bindings(workflow) 
15        seed-par-var-bindings ← get-par-var-bindings(seed) 
16           new-par-var-bindings ← workflow-par-var-bindings ∪ seed-par-var-bindings 
17        set-par-var-bindings(workflow, new-par-var-bindings) 
18     return workflow 
___________________________________________________________________________________ 

 

The algorithm then proceeds to ground the selected workflows by assigning unique 
logical identifiers to variables in the workflow that are not input data variables nor 
parameter variables.  For each intermediate and final link in the workflow, its 
corresponding variable will be assigned a unique identifier using the DODs that describe 
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its properties. During this step the invocation command for each component is also 
formulated.  This is done by the algorithm INSTANTIATE-WORKFLOW described 
below.  All workflow candidates will then be ground and ready to be formatted for 
submission to the workflow mapping and execution system by extracting from the 
workflow instance only the information required for a ground workflow.  
 

 

Table 5: Algorithm for Backward Sweep Through Workflow 
_______________________________________________________________________________ 

Algorithm:  BACKWARD-SWEEP-THROUGH-WORKFLOW 

Input:  seeded-workflow    
Output: binding-ready-workflows 

1 workflow  ← seeded-workflow 
2 new-DODs ← w:find-DODs-given-output-requirements(workflow) 
3 when (new-DODs ≠ {}) 
4       set-DODs(workflow, get-DODs(workflow) ∪ new-DODs) 
5 binding-ready-workflows ← {workflow} 
6 return binding-ready-workflows 
___________________________________________________________________________________ 

 
 

Generating Seeded Workflows  
First, the DODs of the seed and the DODs of the workflow template of the request are 
combined.  If the DODs of the seed and the workflow are inconsistent, the call to the 
metadata services to combine these DODs will indicate an error by returning an empty 
set. In that case, an empty seeded workflow is returned to the top-level algorithm. Next, 
the data variable bindings of the seed and the workflow template are combined.  Finally, 
the parameter bindings of the seed and the workflow are combined.  Since we assume 
that the request is unified and well-formed, no errors will occur when merging the 
bindings.  The result of this stage is a seeded workflow. 
 

Backward Sweep  
The backward sweep can obtain the constraints on the input data variables in two 
different ways.  One way is to use workflow services.  These services would propagate 
the constraints at the workflow level and would not necessarily reason about constraints 
for the intermediate variables in the workflow.  Another way is to use component 
services.  The algorithm would have to walk though the workflow nodes and propagate 
constraints component by component by invoking functions implemented by the 
component catalog for each of the components.   

Table 5 shows the algorithm for the BACKWARD-SWEEP function using the 
workflow services.  A single function that takes the whole workflow as an argument will 
return any additional DODs including DODs on input data variables but may also contain 
DODs on intermediate data variables when appropriate. 
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Table 6:  Algorithm for Backward Sweep through Components 
 
Algorithm:  BACKWARD-SWEEP-THROUGH-COMPONENTS 
Input:  seeded-workflow  
Output: binding-ready-workflows 

1 workflow-queue ← seeded-workflow 
2 binding-ready-workflows ← {} 
3 while  (workflow-queue ≠ {}) do 
4     workflow ← dequeue(workflow-queue) 
7     link-queue ← get-output-links(workflow) 
8     while (link-queue ≠ {} & workflow ≠ {}) do 
9         link ← dequeue(link-queue) 
10         when (current-link ∉ get-input-links(workflow)) 
11   node ← get-origin(link) 
           Find all links (going sideways) that have the current node as the origin node 
12            links-shared-origin ← l s.t. l ∈ get-links(workflow) & get-origin(l) = node 
13            link-queue ← link-queue \ links-shared-origin 
          Find all links (going upstream) that have the current node as the destination node 
14            links-shared-dest ← l s.t. l ∈ get-links(workflow) & get-destin(l) = node 
15            link-queue ← link-queue \ links-shared-dest 
           Create a set with all those links that have the current node as origin or destination 
16            links-current-node ← links-same-origin ∪ links-dest-is-origin 

    Find all the DODs in the workflow that are relevant to the current node 
17            vars ← get-data-vars(workflow) ∪ get-param-vars(workflow) 
18            vars-node ← v s.t. v ∈ vars & l ∈ links-current-node & get-variable(l) = v 
19            node-DODs ← entity-DODs(vars-node, get-DODs(workflow)) 
20            comp ← get-node-component(node) 
          Map DODs on workflow variables to DODs on arguments of the node’s component 
21            comp-DODs ← find-comp-DODs(node,comp,node-DODs,links-current-node)  
           If the node’s component is not concrete, get specializations of the component 
           and create a new workflow candidate with each of the specializations obtained 
22            if (not c:is-concrete(comp)) then  
23                  concrete-components  ← c:specialize(comp,comp-DODs) 
          If no specialization of the component can satisfy the requirements, reject the current workflow 
24                         when (concrete-components ≠ {}) 
25                      for each cc ∈ concrete-components do  
26                             copy  ← copy(workflow)  
27                             copy  ← replace(comp,cc, node,copy) 
28                             workflow-queue ← workflow-queue ∪ copy 
29            else  
30                  comp-input-DODs ← c:find-DODs-given-output-requirements(comp,comp-DODs)  

  If no DODs can satisfy the requirements on the component, reject the current workflow 
31                 if comp-input-DODs = {}  
32                       workflow ← {} 
33                 else  
          Map DODs on arguments of the node’s component to DODs on workflow variables  
34                       var-DODs  ← find-variable-DODs(vars,node,comp,comp-input-DODs) 
35                       set-DODs(current-workflow) ← get-DODs(workflow) ∪ var-DODs  
36     end while over link-queue  
37  when  (workflow ≠ {})  
38                binding-ready-workflows ← binding-ready-workflows ∪ workflow 
39  end while over workflow-queue  
40  return binding-ready-workflows 
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Table 7: Algorithm for Binding Workflows by Selecting Input Data 
__________________________________________________________________________________ 
Algorithm: SELECT-INPUT-DATA-OBJECTS 

Input:  binding-ready-workflow 
Output: bound-workflows 

1 bound-workflows ← {} 
2 input-links ← get-input-links(specialized-workflow) 
3 input-data-variables ← get-variables(input-links) 
4 input-DODs ← get-variables(input-data-variables) 
5 input-bindings ← d:find-data-objects(input-DODs) 
6 for each binding ∈ input-bindings do 
7      workflow ← copy(specialized-workflow) 
8      set-data-variable-bindings(workflow, get-data-variable-bindings(workflow) ∪ binding) 
9      data-objects ← get-data-objects(input-bindings) 
10      for each data-object ∈ data-objects do 
11              additional-DODs ← d:obtain-DODs(data-object) 
12              set-DODs(workflow, get-DODs(workflow) ∪ additional-DODs) 
13      bound-workflows ← bound-workflows ∪ {workflow} 
14 return bound-workflows 
___________________________________________________________________________________ 

 
Table 8:  Algorithm for Forward Sweep Through Workflow 

___________________________________________________________________________________ 
Algorithm:  FORWARD-SWEEP-THROUGH-WORKFLOW 

Input:  bound-workflow    
Output: configured-workflow   

1 workflow ← bound-workflow 
2 new-DODs ← w:predict-DODs-given-input-requirements(workflow) 
3 when (new-DODs ≠ {}) 
4       set-DODs(workflow, get-DODs(workflow) ∪ new-DODs) 
5 if is-configured(workflow) 
6       configured-workflow ← workflow 
7 else 
8       configured-workflow ← null 
9  return configured-workflow 
___________________________________________________________________________________ 

 
 

Table 6 shows the algorithm for the BACKWARD-SWEEP function using the 
component services. For each node in the candidate workflow, it traverses the workflow 
from end results to initial inputs.  For each of the nodes visited, the algorithm processes 
together all the links that have that node either as an origin or as a destination.  This is 
because some workflow nodes are origin to more than one link.  In such cases, we need 
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to gather all the DODs on workflow variables that constrain the parameters of that node’s 
component as we traverse the workflow.  If the component is abstract, all the possible 
specializations from that abstract component class are obtained. These could be either 
more specific component classes or concrete components.  When more than one 
specialization is returned, more than one specialized workflow will be created for the 
initial seeded workflow. All additional DODs that the component places on its arguments 
and that are returned by the component catalog are added to the workflow DODs. This 
may include parameter values that can be set during this step as constraints on input and 
output arguments of the component are introduced by the workflow. 
For simplicity, the algorithm in Table 7 assumes that each node in the workflow is origin 
to only one link.  In cases where there is more than one link with the node as origin, the 
algorithm will only proceed to specialize the component in a node when all links relevant 
to the outputs of a node have been processed.  That is, it ensures that the paths from the 
outputs to that node have already been fully processed.   

When using the workflow services for the backward sweep, any abstract components 
of the workflow will not be specialized.  Therefore, when using workflow services for the 
backward sweep the workflow template specified in the request must be a concrete 
workflow.  

The result of the backward sweep is a set of candidate workflows that are all binding-
ready workflows.   

 

Selecting Input Data  
This algorithm starts with a binding-ready workflow that includes DODs on all input data 
variables.  First, it finds available data objects that match those DODs. There can be 
several combinations of data object for input data variables, and in that case several sets 
of bindings are returned.  In that case, a bound workflow will be created for each set of 
bindings. If there are no matching data sources then the workflow is rejected and an 
empty workflow is returned.  

Note that there is a single query to the data catalog for a given workflow, rather than a 
query per input data variable.  This ensures that any constraints among input data 
variables are taken into account by the data catalog during the matching of input data 
sources. 

Next, the algorithm requests from the metadata services all additional DODs of the 
selected input data objects.  There may be arbitrarily many possible properties of a data 
object and there may be a cost to generating the values of some of the properties.  Ideally, 
this function would be invoked in a selective and cost-sensitive manner though this is not 
addressed in our current work.  
 

Forward Sweep  
Like the backward sweep, the forward sweep can be approached in two different ways.  
One approach is to use workflow services.  These services would propagate the 
constraints on input data variables at the workflow level and would not necessarily reason 
about constraints for the intermediate variables in the workflow.  Another approach is to 
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use component services.  The algorithm would have to walk through the workflow nodes 
and propagate constraints component by component by invoking functions implemented 
by the component catalog for each of the components.   
 
 

Table 9:  Algorithm for Forward Sweep Through Components 
 
Algorithm:  FORWARD-SWEEP-THROUGH-COMPONENTS 
Input:  bound-workflow  
Output: configured-workflows 
1 workflow-queue ← bound-workflow 
1 configured-workflows ← {} 
3 while  (workflow-queue ≠ {}) do 
4     workflow ← dequeue(workflow-queue) 
2     link-queue ← get-input-links(workflow) 
8     while (link-queue ≠ {} & workflow ≠ {}) do 
9         link ← dequeue(link-queue) 
10         when (current-link ∉ get-output-links(workflow)) 
11   node ← get-dest(link) 
          Find all links (going sideways) that have the current node as the origin node 
12            links-shared-origin ← l s.t. l ∈ get-links(workflow) & get-origin(l) = node 
13            link-queue ← link-queue \ links-shared-origin 
          Find all links (going upstream) that have the current node as the destination node 
14            links-shared-dest ← l s.t. l ∈ get-links(workflow) & get-destin(l) = node 
15            link-queue ← link-queue \ links-shared-dest 
16 links-current-node ← links-same-origin ∪ links-dest-is-origin 

  Find all the DODs in the workflow that are relevant to the current node 
17            vars ← get-data-vars(workflow) ∪ get-param-vars(workflow) 
18            vars-node ← v s.t. v ∈ vars & l ∈ links-current-node & get-variable(l) = v 
19            node-DODs ← d:entity-DODs(vars-node, get-DODs(workflow)) 
20            comp ← get-node-component(node) 
          Map DODs on workflow variables to DODs on arguments of the node’s component 
21 comp-DODs ← find-comp-DODs(node,comp,node-DODs,links-current-node)  
          If the node’s component is not concrete, create a new workflow candidate with each specialization  
22            if (not c:is-concrete(comp)) then  
23                  concrete-components  ← c:specialize-to-concrete(comp,node-DODs) 
          If no specialization of the component can satisfy the requirements, reject the current workflow 
24                         when (concrete-components ≠ {}) 
25                      for each cc ∈ concrete-components do  
26                             copy  ← copy(workflow)  
27                             copy  ← replace(comp,cc, node,copy) 
28                             workflow-queue ← workflow-queue ∪ copy 
29            else  
          If the component is not configured, create a new workflow candidate with each configuration obtained 
30            if (not c:is-configured(comp, comp-DODs)) then  
31                  component-configurations ← c:configure(comp,comp-DODs) 
         If no configuration of the component can satisfy the requirements, reject the current workflow 
                         when (component-configurations ≠ {}) 
32                        for each cc ∈ component-configurations do  
33                              new  ← copy(workflow)  
34                              new  ← replace-component(workflow, cc) 
35                              workflow-queue ← workflow-queue ∪ copy 
36            else  
37                    comp-o-DODs ← c:predict-DODs-given-input-requirements(comp,comp-DODs) 
         Map DODs on arguments of the node’s component to DODs on workflow variables  
38                var-DODs  ← find-variable-DODs(vars,node,comp,comp-o-DODs) 
39                set-DODs(current-workflow, get-DODs(workflow) ∪ var-DODs ) 
40     end while over link-queue  
41  when  (workflow ≠ {})  
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42          configured-workflows ← configured-workflows ∪ {workflow} 
43  end while over workflow-queue  
44  return configured-workflows  
 
 
 

Table 10:  Algorithm for Estimating Workflow Performance Through the Workflow 
______________________________________________________________ 
Algorithm:  ESTIMATE-PERFORMANCE-THROUGH-WORKFLOW 

Input:  ground-workflow 
Output: ranked-ground-workflow 

1 workflow ← ground-workflow 
2 set-performance-estimate(workflow, w: estimate-performance(workflow) ) 
3  return workflow 
___________________________________________________________________________________ 

 
 

Table 11:  Algorithm for Estimating Workflow Performance Through Components 
______________________________________________________________________________ 

Algorithm:  ESTIMATE-PERFORMANCE-THROUGH-COMPONENTS 

Input:  ground-workflow 
Output: ranked-ground-workflow 

1 workflow ← ground-workflow 
2     link-queue ← get-output-links(workflow) 
3     while (link-queue ≠ {} do 
4         link ← dequeue(link-queue) 
5         when (current-link ∉ get-output-links(workflow)) 
6   node ← get-dest(link) 
          Find all links (going sideways) that have the current node as the origin node 
7            links-shared-origin ← l s.t. l ∈ get-links(workflow) & get-origin(l) = node 
8            link-queue ← link-queue \ links-shared-origin 
          Find all links (going upstream) that have the current node as the destination node 
9            links-shared-dest ← l s.t. l ∈ get-links(workflow) & get-destin(l) = node 
10            link-queue ← link-queue \ links-shared-dest 

11               links-current-node ← links-same-origin ∪ links-dest-is-origin 
  Find all the DODs in the workflow that are relevant to the current node 

12            vars ← get-data-vars(workflow) ∪ get-param-vars(workflow) 
13            vars-node ← v s.t. v ∈ vars & l ∈ links-current-node & get-variable(l) = v 
14            node-DODs ← d:entity-DODs(vars-node, get-DODs(workflow)) 
15            comp ← get-node-component(node) 
          Map DODs on workflow variables to DODs on arguments of the node’s component 

16                 comp-DODs ← find-comp-DODs(node,comp,node-DODs,links-current-node)  
          Get estimate of the component performance  
17            set-predicted-execution-time(node, c:estimate-performance(comp,comp-DODs) ) 
18     end while over link-queue  
19  set-performance-estimate(workflow, estimate-aggregate-performance(workflow) ) 
20  return workflow 
___________________________________________________________________________________ 
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As was the case with the backward sweep, the algorithm that uses the workflow 

services for the backward sweep does not specialize components.  Therefore, when using 
workflow services for the forward sweep the workflow must be a concrete workflow.   

The result of the forward sweep is a set of candidate workflows that are all configured 
and specialized workflows.   
 

Table 12:  Algorithm for Instantiating Workflows 
_______________________________________________________________________________ 

Algorithm:  INSTANTIATE-WORKFLOW 

Input:  configured-workflow 
Output: workflow-instances 

1 workflow-queue ← configured-workflow 
2 workflow-instances ← {} 
3 while  (workflow-queue ≠ {}) do 
4     workflow ← dequeue(workflow-queue) 
5     link-queue ← get-output-links(workflow) 
6     while (link-queue ≠ {} & workflow ≠ {}) do 
7         link ← dequeue(link-queue) 
8         when (current-link ∉ get-input-links(workflow)) 
9              link-DODs ← d:entity-DODs(get-variable(current-link), get-DODs(workflow)) 
10              id ← d:assign-identifier(link-DODs) 
11              binding ← <get-link-variable(link), id> 
12              d:assert-predicted-DODs(id,link-DODs) 
13              set-workflow-bindings(workflow, get-workflow-bindings(workflow) ∪ binding ) 
14     end while over link-queue  
14     set-invocation-commands(workflow)  
15  workflow-instances ← workflow-instances ∪ {workflow} 
16  end while over workflow-queue  
17  return  workflow-instances 
___________________________________________________________________________________ 

 

Estimating Workflow Performance 
Like the forward and backward sweeps, estimating workflow performance can be done 
using workflow services or component services.  Because the estimates using component 
services would need the DODs for intermediate data products, it is required that the 
forward sweep should have been done using component services as well.  

The algorithm to estimate performance using component services is shown in Table 
11.  It walks through the nodes of the workflow, and for each node it gathers the DODs 
that are relevant to it.  Using those DODs, it invokes the component services to retrieve 
the estimates of performance of the workflow.  With the individual estimates for each 
node, the algorithm then calls a function that aggregates the estimates for the overall 
workflow (estimate-aggregate-performance). This function finds the longest path 
between the input links and the output links. 
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Instantiating and Grounding Workflows  
The algorithm for instantiating workflows, shown in Table 12, traverses a workflow and 
gathers all the DODs on a data variable and requests from the data catalog a unique 
identifier for the corresponding execution data product.  If the DODs are rich enough, the 
data catalog will be able to detect when data products are equal and therefore give them 
the same identifier.  This enables data reuse with the benefit of saving computation time, 
as the workflow execution system can eliminate unnecessary computations that produce 
already existing data that was produced by previously executed workflows.  When the 
DODs are not rich enough, then reuse will not be possible as each new data product will 
have its own identifier and there will be no way to detect when data products from 
different workflows are the same (unless the workflows are identical).  This can happen 
in the case where the forward sweep proceeds through workflows rather than through 
components.  

During grounding of workflows, the invocation command is set for each of the node’s 
components.  A function is shown in the table that applies to the whole workflow, within 
that function there is an invocation of the component catalog for each node’s component 
using all the DODs that are relevant to the variables in links adjacent to the node. 

The final grounding step essentially extracts a small subset of the information in the 
workflow instance to create a ground workflow that can be submitted to the workflow 
mapping and execution engine.  An example of a workflow instance and its 
corresponding ground workflow is shown in the next section.  

 

Summary of Functions for Data and Catalog Services 
Table 13 summarizes the functions for data and catalog services invoked by the workflow 
generation algorithm. For each function, we indicate the use of that function in the 
algorithm.  

The next section walks through the main steps of the algorithm with an example of a 
workflow request. 

3.1.4  A walkthrough Example of Workflow Generation 
 

We now show an example of how workflow candidates are generated from a workflow 
request using the algorithm just presented.  We present an example that runs end-to-end 
in our implemented system, and show through the representation of candidate workflows 
at each stage.  We use different namespaces to refer to terms that are defined in different 
catalogs.  Therefore, the workflow catalog, component catalog, and data catalog will have 
different namespaces.  We use the W3C Ontology Web Language OWL 
(www.w3.org/TR/owl-features) to represent workflows and DODs, but will show the 
examples using N3 notation. 

Table 14 shows the representation of the workflow template for 
ModelerThenClassifier shown in Figure 4. The workflow contains two nodes for a 
modeler and a classifier.  There are six links that represent inputs and outputs of the two 
nodes.  Note that the workflow in Figure 4 shows the heap size as a parameter of the 
classifier, which is not used in this example. 

http://www.w3.org/TR/owl-features
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Table 15 shows an example of a representation of a workflow request. It specifies 
the workflow to use (ModelerThenClassifier) and provides additional DODs on an output 
data variable and a parameter variable. In particular, the output of the workflow should 
include a classification of a weather data object (i.e. the domain of the 
ClassificationDataVariable is Weather) and the value of the ClassIndexParameterVar is 5. 
This is the same request shown in Table 2. 
 
 
Table 13:  Summary of functions that need to be supported in the metadata services and the 

component services to enable automatic workflow generation 
 
Function in Metadata Services Purpose in Automatic Generation Process 
d:combine-DODs Seed workflow templates 
d:entity-DODs Filter relevant data properties to be 

propagated in the workflow enables workflow 
candidate addition and elimination 

d:assign-identifier Create unique identifiers and properties for 
workflow data products so they can be reused 
in future workflows 

d:assert-predicted-DODs 

d:find-data-objects Selection of input data enables creation of 
bound workflows 

d:obtain-DODs Propagation of input data properties in 
forward sweep enables component 
specialization and workflow candidate 
elimination 

 
 
Function in Component Services Purpose in Automatic Generation Process 
c:inputs Validate workflow template in request 
c:parameters 
c:outputs 
c:args 
c:invocation-command Ground workflows to be submitted for 

execution 
c:is-concrete Use of abstract components in workflow 

templates that can be specialized in backward 
and forward sweep 

c:specialize 
c:specialize-to-concrete 
c:is-backward-enabled Generate binding-ready workflows in 

backward sweep c:find-DODs-given-output-requirements 
c:is-forward-enabled Generate configured workflows in forward 

sweep c:predict-DODs-given-input-requirements 
c:is-configurable 
c:configure 
c:is-configured 
c:estimate-performance Rank candidate workflows 
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Given this request, the seeded workflow initially generated by the algorithm is as 

the original template shown in Table 13 except that it includes the additional DODs on 
ClassificationDataVariable and ClassIndexParameterVar that are introduced by the request.  
Table 16 shows a relevant excerpt of the seeded workflow, where the additions to the 
original workflow template are highlighted in bold face. 
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Table 14:  A Workflow Example in N3 Notation 
 
 
ModelerThenClassifier      a       wflow:WorkflowTemplate ; 
      wflow:hasNode classifierNode , modelerNode ; 
      wflow:hasLink modelerTrainingDataInputLink, modelerJavaMaxHeapInputLink,                
             classifierOutputLink , modelerOutputClassifierInputInOutLink,   
             modelerClassIndexInputLink , classifierDataInputLink . 
 
modelerNode      a       wflow:Node ;      wflow:hasComponent ac:Modeler. 
classifierNode      a       wflow:Node ;      wflow:hasComponent ac:Classifier . 
 
modelerTrainingDataInputLink      a       wflow:InputLink ; 
      wflow:hasDestinationNode modelerNode ; 
      wflow:hasDestinationArgument ac:d ; 
      wflow:hasVariable TrainingDataVariable . 
 
TrainingDataVariable      a       dcdm:Instance , wflow:DataVariable . 
 
maxJavaHeapSizeModelerParameterVar      a       wflow:ParameterVariable . 
 
modelerJavaMaxHeapInputLink      a       wflow:InputLink ; 
      wflow:hasDestinationNode  modelerNode ; 
      wflow:hasDestinationArgument ac:j ; 
      wflow:hasVariable maxJavaHeapSizeModelerParameterVar . 
 
ClassIndexParameterVar     a       wflow:ParameterVariable . 
 
modelerClassIndexInputLink      a       wflow:InputLink ; 
      wflow:hasDestinationNode    modelerNode ; 
      wflow:hasDestinationArgument ac:i ; 
 
ModelDataVariable      a       dcdm:Model , wflow:DataVariable . 
 
modelerOutputClassifierInputInOutLink      a       wflow:InOutLink ; 
      wflow:hasDestinationNode      classifierNode ; 
      wflow:hasDestinationArgument ac:m ; 
      wflow:hasOriginNode modelerNode ; 
      wflow:hasOriginArgument ac:o ; 
      wflow:hasVariable ModelDataVariable . 
 
classifierDataInputLink      a       wflow:InputLink ; 
      wflow:hasDestinationNode classifierNode ; 
      wflow:hasDestinationArgument ac:d ; 
      wflow:hasVariable TestDataVariable . 
 
TestDataVariable      a       dcdm:Instance , wflow:DataVariable ; 

 dcdm:notSameObject TrainingDataVariable; 
      wflow:hasVariable modelerClassIndex . 
 
classifierOutputLink      a       wflow:OutputLink ; 
      wflow:hasOriginNode classifierNode ; 
      wflow:hasOriginArgument ac:o ; 
      wflow:hasVariable ClassificationtDataVariable . 
 
ClassificationDataVariable      a       wflow:DataVariable , dcdm:Classification . 
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Table 15: Example of Workflow Requests in N3 Notation 
 

 
owl:imports ModelerThenClassifier.owl  // use ModelerThenClassifier workflow 
     
ClassificationDataVariable a dcdm:Classification ;  
      dcdm:hasDomain dcdm:weather. 

 
ClassIndexParameterVar wflow:hasParameterValue 5. 

 
 
 
 

Table 16:  Relevant Excerpts of a Seeded Workflow 
 
… 
ClassIndexParameterVar     a       wflow:ParameterVariable ;  
      wflow:hasParameterValue 5.  // from the request 
… 
ClassificationDataVariable      a       wflow:DataVariable , dcdm:Classification; 
      dcdm:hasDomain dcdm:weather. // from the request 
… 

 
Table 17 shows an example of a binding-ready workflow generated as a candidate 

after the backward sweep.  The original Modeler abstract component has been specialized 
into LmtModeler and the Classifier into J48Classifier. This specialization introduces some new 
DODs of the data objects used or created by the components, such as dcdm:hasModelType.  
The DODs in the original request are propagated by the backward sweep and result in 
additional DODs on some of the workflow data variables. For example, 
TrainingDataVariable, ModelDataVariable, and TestDataVariable have a new DOD with a 
requirement in their domain property that it be weather. 

Decision Tree classifiers can use Decision Tree models only and Bayes classifiers 
can only use Bayes models.  Assuming a component catalog that includes three Decision 
Tree modelers (J48Modeler, LmtModeler, ID3Modeler), three Decision Tree 
classifiers(J48Classifier, LmtClassifier, ID3Classifier), three Bayes modelers(BayeNetModeler, 
NaiveBayesModeler, HBNModeler) and three Bayes classifiers (BayeNetClassifier, 
NaiveBayesClassifier, HBNClassifier and six classifiers), 18 total seeded specialized workflows 
would be generated as candidates.  

The next step of the algorithm finds available data objects for the input data 
variables.  With the workflow in Table 17, the following query for selecting input data 
objects for two input data variables is generated: 
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Table 17:  An Example Binding-Ready Workflow After the Backward Sweep 
 

TrainingDataVariable      a       dcdm: Instance , wflow:DataVariable; 
      dcdm:hasDomain dcdm:weather. 
 
TestDataVariable      a       dcdm:Instance , wflow:DataVariable; 
      dcdm:notSameObject TrainingDataVariable; 
      dcdm:hasDomain dcdm:weather. 
 
 
 
 

LmtModelerThenJ48Classifier      a       wflow:WorkflowTemplate ; 
      wflow:hasNode classifierNode , modelerNode ; 
      wflow:hasLink modelerTrainingDataInputLink , modelerJavaMaxHeapInputLink , classifierOutputLink ,   
           modelerOutputClassifierInputInOutLink , modelerClassIndexInputLink , classifierDataInputLink. 

 
modelerNode      a       wflow:Node ;      wflow:hasComponent ac:LmtModeler. 
classifierNode      a       wflow:Node ;      wflow:hasComponent ac:J48Classifier. 
 
modelerTrainingDataInputLink      a       wflow:InputLink ; 
      wflow:hasDestinationNode modelerNode ; 
      wflow:hasDestinationArgument ac:d ; 
      wflow:hasVariable TrainingDataVariable ; 
 
TrainingDataVariable 
      a       dcdm:Instance , wflow:DataVariable; 
      dcdm:hasDomain dcdm:weather.     
 
maxJavaHeapSizeModelerParameterVar      a       wflow:ParameterVariable . 
 
modelerJavaMaxHeapInputLink      a       wflow:InputLink ; 
      wflow:hasDestinationNode              modelerNode ; 
      wflow:hasDestinationArgument ac:j ; 
      wflow:hasVariable j maxJavaHeapSizeModelerParameterVar . 
 
ClassIndexParameterVar      a       wflow:ParameterVariable . 
      wflow:hasParameterValue 5.  // from the request 
 
modelerClassIndexInputLink      a       wflow:InputLink ; 
      wflow:hasDestinationNode              modelerNode ; 
      wflow:hasDestinationArgument ac:i ; 
      wflow:hasVariable ClassIndexParameterVar . 
 
modelerOutputClassifierInputInOutLink      a       wflow:InOutLink ; 
      wflow:hasDestinationNode              classifierNode ; 
      wflow:hasDestinationArgument ac:m ; 
      wflow:hasOriginNode modelerNode ; 
      wflow:hasOriginArgument ac:o ; 
      wflow:hasVariable ModelDataVariable ; 
 
ModelDataVariable 
      a       dcdm:LmtModel , wflow:DataVariable ; 
     dcdm:hasDomain dcdm:weather ; 
     dcdm:hasModelType DecisionTree. 
 
classifierDataInputLink      a       wflow:InputLink ; 
      wflow:hasDestinationNode classifierNode ; 
      wflow:hasDestinationArgument ac:i ; 
      wflow:hasVariable TestDataVariable . 
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TestDataVariable      a       dcdm:Instance , wflow:DataVariable; 
 dcdm:notSameObject TrainingDataVariable; 

      dcdm:hasDomain dcdm:weather.  
 
classifierOutputLink      a       wflow:OutputLink ; 
      wflow:hasOriginNode classifierNode ; 
      wflow:hasOriginArgument ac:o ; 
      wflow:hasVariable ClassificationDataVariable . 
 
ClassificationDataVariable      a       wflow:DataVariable , dcdm:DtmClassification ; 
dcdm:hasDomain dcdm:weather;  // from the request 
 
 

Table 18: Relevant Excerpts of an Example Bound Specialized Workflow 
 
… 
TrainingDataVariable 
      a       dcdm:Instance , wflow:DataVariable; 
      dcdm:hasDomain dcdm:weather; 
      wflow:hasDataBinding dcdm: weather-2007-31-101501. 
 
TestDataVariable 
      a       dcdm:Instance , wflow:DataVariable; 
      dcdm:hasDomain dcdm:weather; 
      wflow:hasDataBinding dcdm:weather-2007-31-155754. 
  

 
 

Other seeded specialized workflow candidates may generate different queries for 
finding data objects. For example, workflow candidates with BayesModeler or BayesClassifier 
will need DiscreteInstance as an input.  A workflow with a NaiveBayesModeler and a 
J48Classifier will result in a query with the following data object descriptions: 

TrainingDataVariable      a       dcdm:DiscreteInstance , wflow:DataVariable; 
      dcdm:hasDomain dcdm:weather. 
 
TestDataVariable      a       dcdm:Instance , wflow:DataVariable; 
      dcdm:notSameObject TrainingDataVariable; 
      dcdm:hasDomain dcdm:weather. 

 
With a data catalog with four weather domain datasets (weather-2007-31-101501, 

weather-2007-31-101503, weather-2007-31-101656, and weather-2007-31-155754) that 
are all ContinuousInstances, the system will not find matching datasets for the workflows 
that need DiscreteInstances.  In our running example, only 4 of the 18 candidate workflows 
with Lmt and J48 combinations (LmtModelerThenJ48Classifier, LmtModelerThenLmtClassifer, 
J48ModelerThen LmtClassifier, J48ModelerThen J48Classifier) will get results from the query to 
find matching data objects.  For each candidate binding-ready workflow, the system 
produces twelve bindings since TrainingDataVariable and TestDataVariable should be 
bound to different weather datasets. That is a total of 48 candidate bound workflows 
generated in our running example.  Table 18 shows an example of a bound workflow for 
LmtModelerThenJ48Classifier. For brevity, only the bindings and the DODs of the input data 
variables are shown.  
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The forward sweep sets all the parameter values of components and includes 
DODs for workflow data products. After that, the grounding step introduces data object 
identifiers for intermediate and final workflow data variables.  Table 19 shows an 
example of a resulting workflow instance.  The value of 
maxJavaHeapSizeModelerParameterVar is set in proportion to the size of the data sets 
that are bound to Training DataVariable (dcdm:weather-2007-31-101501).  In particular, if the 
size of the data set is greater than 10,000 the parameter value is set to 1024M and if the 
size is less than 1,000 the value is set to 256M; otherwise it will be set to 512M.    

 
 

Table 19:  A Workflow Instance After Workflow Instantiation 
 
LmtModelerThenJ48Classifier      a       wflow:WorkflowTemplate ; 
      wflow:hasLink modelerTrainingDataInputLink , modelerJavaMaxHeapInputLink , classifierOutputLink , 
modelerOutputClassifierInputInOutLink , modelerClassIndexInputLink , classifierDataInputLink ; 
      wflow:hasNode classifierNode , modelerNode . 
 
modelerNode      a       wflow:Node ;      wflow:hasComponent ac:LmtModeler. 
classifierNode      a       wflow:Node ;      wflow:hasComponent ac:J48Classifier. 
 
modelerTrainingDataInputLink      a       wflow:InputLink ; 
      wflow:hasDestinationNode modelerNode ; 
      wflow:hasDestinationArgument ac:d ; 
      wflow:hasVariable TrainingDataVariable. 
 
TrainingDataVariable      a       dcdm:Instance , wflow:DataVariable; 
      dcdm:hasDomain dcdm:weather; 
      wflow:hasDataBinding dcdm:weather-2007-31-101501. 
 
maxJavaHeapSizeModelerParameterVar      a       wflow:ParameterVariable ; 
      wflow:hasParameterValue “512M”;  
 
modelerJavaMaxHeapInputLink      a       wflow:InputLink ; 
      wflow:hasDestinationNode              modelerNode ; 
      wflow:hasDestinationArgument ac:j ; 
      wflow:hasVariable maxJavaHeapSizeModelerParameterVar . 
 
modelerClassIndex      a       wflow:ParameterVariable . 
      wflow:hasParameterValue 5;  // from the request 
 
modelerClassIndexInputLink     a       wflow:InputLink ; 
      wflow:hasDestinationNode              modelerNode ; 
      wflow:hasDestinationArgument ac:i ; 
 
modelerOutputClassifierInputInOutLink      a       wflow:InOutLink ; 
      wflow:hasDestinationNode              classifierNode ; 
      wflow:hasDestinationArgument ac:m ; 
      wflow:hasOriginNode modelerNode ; 
      wflow:hasOriginArgument ac:o ; 
      wflow:hasVariable ModelDataVariable . 
 
ModelDataVariable      a       dcdm:BayesModel , wflow:DataVariable ; 
      dcdm:hasModelType DecisionTree ; 
      dcdm:hasDomain dcdm:weather ; 
      wflow:hasDataBinding modelerOutputModelDataVariable_1191372118140.   
 
classifierDataInputLink      a       wflow:InputLink ; 
      wflow:hasDestinationNode classifierNode ; 
      wflow:hasDestinationArgument ac:d ; 
      wflow:hasVariable TestDataVariable . 
 
TestDataVariable      a       dcdm:Instance , wflow:DataVariable; 
      dcdm:hasDomain dcdm:weather; 
      workflow:hasDataBinding dcdm:weather-2007-31-155754. 
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classifierOutputLink      a       wflow:OutputLink ; 
      wflow:hasOriginNode classifierNode ; 
      wflow:hasOriginArgument ac:o; 
      wflow:hasVariable ClassificationDataVariable . 
 
ClassificationDataVariable      a       wflow:DataVariable , dcdm:DtmClassification ; 
     dcdm:hasDomain dcdm:weather; // from the request 
     wflow:hasDataBinding ClassificationDataVariable_1191372118140.  
 
  
 
 

Table 20:  Example Ground Workflow Generated from a Workflow Instance 
 
 
<?xml version="1.0" encoding="UTF-8"?> 
<!-- generated: Tue Oct 02 17:42:29 PDT 2007 by Wings --> 
<adag xsi:schemaLocation="http://www.griphyn.org/chimera/DAX http://www.griphyn.org/chimera/dax-
1.10.xsd"  
xmlns="http://www.griphyn.org/chimera/DAX"  
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
version="1.10" count="1" index="0" name="ModelerThenClassifier-dax198d8-b4d199239c5e7f99"> 
 
<!-- part 2: definition of all jobs --> 
   <job id="Job1-04bd4f3cbfd2" namespace="http://www.isi.edu/ac/dm/library.owl" name="J48Classifier" 
version=""> 
      <argument>-T <filename file="weather-2007-31-155754"/>  
                    -l <filename file="modelerOutputModelDataVariable_1191372118140"/>  
                    -O <filename file="ClassificationDataVariable_1191372118140"/> </argument> 
      <uses file="modelerOutputModelDataVariable_1191372118140" link="input"/> 
      <uses file="weather-2007-31-155754" link="input"/> 
      <uses file="ClassificationDataVariable_1191372118140" link="output"/> 
   </job> 
   <job id="Job0-18917e3ec858" namespace="http://www.isi.edu/ac/dm/library.owl" name="LmtModeler" 
version=""> 
      <argument>-Xmx 512M -t <filename file="weather-2007-31-101501"/>  
                         -d <filename file="modelerOutputModelDataVariable_1191372120250"/> -c 5 </argument> 
      <uses file="weather-2007-07-31-101501" link="input"/> 
      <uses file="modelerOutputModelDataVariable_1191372120250" link="output"/> 
   </job> 
 
<!-- part 3: list of control-flow dependencies (empty for single jobs) --> 
   <child ref="Job1- 04bd4f3cbfd2"> 
      <parent ref="Job0-18917e3ec858"/> 
   </child> 
</adag> 
 
 

 
The next step is ranking the 48 candidate workflows based on estimates of 

performance.  For this, the predicted DODs for intermediate data sets are useful.  For 
example, the size of intermediate data products is useful to obtain estimates on 
performance time for the different algorithms of the workflow components. 

In the final step, each workflow instance is turned into a bound workflow that can 
be submitted to the workflow mapping and execution system.  Table 20 shows the ground 
workflow extracted for the workflow instance in Table 18.  It shows the format used by 
the Pegasus workflow mapping and execution engine [Deelman et al 05]. 

http://www.griphyn.org/chimera/DAX
http://www.griphyn.org/chimera/dax-1.10.xsd
http://www.griphyn.org/chimera/dax-1.10.xsd
http://www.griphyn.org/chimera/DAX
http://www.w3.org/2001/XMLSchema-instance
http://www.isi.edu/ac/dm/library.owl
http://www.isi.edu/ac/dm/library.owl
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3.2 Workflow Ranking and Selection 
 
For implementing the ranking module, System Research ported the HEFT [Topcuoglu 
99] multiprocessor scheduling algorithm for scheduling on the Grid. The ranking for each 
workflow happens as follows:  

1) For each job in the workflow, the weighted execution times are computed.  
2) The downward ranks are computed then for each job. Downward rank of a job is 

defined as the longest distance from the root of the workflow to the job, excluding 
the computation of the job.  

3) The jobs are then sorted in ascending order of their downward ranks.  
4) Each of the above jobs in the sorted list, are then scheduled to a grid site. The grid 

site that is finally selected is the one that minimizes the finish time for the job.  
5) The makespan of the workflow is determined as the maximum of the actual finish 

times of the leaf jobs of the scheduled workflow.  
6) The higher the makespan of a workflow, the longer it will take to run. Thus, the 

workflow with the least makespan is the one with the highest rank, where higher 
the rank means better.  

For the above algorithm, the SR relies on the Process Catalog for the following 
information:  

• The sites where a particular job can be executed.  
• The predicted performance of a code on a particular site, when run with the 

arguments specified in the DAX.  

 
3.3 Managing Creation and Execution of Multiple Workflows  
 
The Ensemble Manager (EM) component of the SR system is responsible for supporting 
the creation and the execution of multiple workflows at the same time.  

Current workflow systems allow only sequential or uncoordinated creation and 
execution of a single workflow. The Ensemble Manager that we have developed 
coordinates and efficiently handles generation, ranking, planning and executing of 100’s 
of workflows simultaneously on the TanGrid.  

The EM takes a set of Tangram requests or Seeds. Each seed is specified with a 
configuration file that configures various aspects of how the request will be ranked, 
planned, executed etc.  
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The Ensemble Manager uses Condor and DagMan to manage the creation and 
execution of workflows. Instead of creating our own queuing mechanism, we built on the 
existing condor scheduler. By generating appropriate condor jobs to do the creation and 
execution steps and adding the dependencies in a dag, the Ensemble Manager can 
efficiently execute 100’s of workflows simultaneously in an efficient manner. EM 
extends and uses several Condor features like job priority, job start time, etc. to provide 
various features like start time for each workflow in an Ensemble, different priorities 
across each workflow, wall time by which the workflow needs to be finished etc.  EM 
uses the postscript feature of Condor that allows it to run a script when a job finishes, no 
matter if the parent job failed or succeeded, to monitor the successful completion of 
different creation, planning and execution jobs.  

 

 
 

Figure 6: Structure of the DAG constructed by the Ensemble manager 
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Ensemble Manager Features:  

• Allows submission of a set of seeds (a portfolio) 
• Each seed is specified with its own seed configuration file 
• Each seed can have a different priority 

o The priority is applied to all stages of the workflow generation and 
execution 

• Each seed can have a different start time 
• Each seed can have a different wall-time or end time. If the workflow is still 

executing when the wall-time finishes the workflow is killed 
• Continuously monitors the progress of the portfolio and seeds and updates the 

status of the seeds in a database. 
 

The Ensemble Manager takes in an input file called portfolio containing Seeds and 
seed configurations. From these seed configurations the ensemble manager generates 
several configuration files for workflow generation, ranking and planning. After 
generating these configuration files, the EM creates the main ensemble dag and submits 
files required to generate, rank, plan and execute the given seeds in the portfolio.  

Figure 6 shows the structure of the DAG constructed by the Ensemble manager for a 
single portfolio (EM Request) with 2 Requests or Seeds (Workflows).  

For each seed the EM creates the following jobs:  
1. Workflow Generation Job: This job takes in the Seed identifier and generates the 

appropriate Abstract Workflows (DAX) 
2. Workflow Ranking Job: This job takes in the DAX generated by the earlier 

Ranking Job and ranks the generated DAX’s and produces a ranked DAX file.  
3. Planner DAG Generator Job: The third job added parses the generated ranked file 

and generates a planner DAG to plan the ranked workflows and execute them 
4.  Planner DAG: The planner dag consists of  

a. Pegasus Plan Job: This job ranks one of the ranked DAX’s in the 
workflow and produces an executable workflow to execute on the 
TanGrid 

b. The Executable Workflow DAG and submit files: This Workflow has the 
jobs which create the Knowledge Base in the Allegro Graph,  the transfer 
job that copies the data from the Evidence Data Base to the Knowledge 
Base, jobs that run the wrapped executables etc. 

 

4. SUPPORT FOR PROGRAM INTEGRATION 

This section describes SR’s effort on developing workflow generation API and 
supporting program integration. The API describes all the queries to be issued by SR's 
automated workflow generation and execution capability to other architectural 
components, notably AC and DC.   

 



 52

4.1. SR-12 Workflow Generation API 

The workflow generation API defines the invocation of DC and PC functions during the 
major steps in workflow generation and execution.  
 

Step 0: Initiating the Workflow Generation Process  

The workflow request may just be to run a workflow template for some purpose or run a 
variant of an existing template.  

  SEA->SR: solveWorkflowRequest(WTi, DODr)  
  SR->SEA: { {dataSetIDi} } 
 
WTi ==> workflow template id  
DODr ==> data object descriptions from the request given in the teo/data/metics/dataAccess 
namespaces on some data variables 

Step 1: Find Candidate Analyses  

This step was not needed for SR-12, since the initial request will specify a template and 
associated constraints. 

Step 2: Find Data Object Descriptions and Argument Mappings  
 
[Q2.1]  
 
   SR->AC: findInputDataRequirements(Ci, {DODi  AMi}) 
   AC->SR: {Cj  {DODk   AMk}} 

 Ci ==> an abstract or concrete component description from the adl namespace from a workflow 
template  

{DODi , AMi}==> data object descriptions in the teo, data, and metrics namespace for the output 
of Ci and component-argument-to-template-dataVariable mappings for Ci - dataVariables will be 
in the sr namespace and the component arguments will be in the adl namespace. Arguments refer 
to the data object inputs and outputs of the component. Note that the DOD's contain information 
about patterns and parameters.  

Cj ==> a component description from the adl namespace for concrete component  

{DODk , AMk} ==> data object descriptions in the teo, data, and metrics namespace for the inputs 
& outputs and component-argument-to-template-dataVariable mappings for Cj - dataVariables 
will be in the sr namespace and the component argument will be in the adl namespace. Note that 
the DOD's contain information about patterns and parameters.  

Step 3: Data Source Selection  

[Q3.1]  

  SR->DC: FindDataSources({DODi})  
  DC->SR: {DVj DSj}  
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{DODi} ==> data object descriptions from the teo/data/metrics/dataAccess namespace mapped to 
data variables (in the sr namespace) from a workflow template. These descriptions explain 
constraints on and between the data variables in a particular workflow template  

{DVj DSj} ==> data variables (in the sr namespace) mapped to data source ids (in the dc 
namespace).  

Step 4: Workflow Instance Generation  

[Q4.1]  

SR->DC: FindDataMetricsForDatasource(DSi &opt {dc metric or 
characteristic})  
DC->SR: DODi 

DSi ==> A data source id  

{dc metric or characteristic} ==> specific data metric or data characteristic - if not provided the 
full set of metrics and characteristics are returned.  

DODi ==> Data object descriptions in the teo, data, and metrics namespace for the DSi data 
source  

[Q4.2]  

SR->AC: FindOutputDataPredictedDescriptions(Ci, {DODi  AMi})  
AC->SR: {DODk  AMk  } 

Ci ==> a component description in the adl namespace for a concrete component  

{DODi , AMi} ==> data object descriptions in the teo, data, and metrics namespace for the input 
and output of Ci and component-argument-to-template-dataVariable mappings for Ci - 
dataVariables will be in the sr namespace and the component arguments will be in the adl 
namespace. Arguments refer to the data object inputs and outputs of the component. Note that the 
DOD's may contain information about patterns and parameters.  

{DODk AMk} ==> data object descriptions in the teo, data, and metrics namespace for the input 
and output of Ci given {DODi AMi}  

[Q4.5]  

  SR->AC GetInvocationCommand(Ci, {DODi  AMi}) 
  AC->SR {Aj} 

Ci==> a component description in the adl namespace for a concrete component  

{DODi AMi} ==> data object descriptions in the teo, data, and metrics namespace for the input 
and output of Ci and component-argument-to-template-dataVariable mappings for Ci - 
dataVariables will be in the sr namespace and the component arguments will be in the adl 
namespace for input and output data objects. Arguments refer to the data object inputs and 
outputs of the component.  

Aj == > an argument list as specified in the argument section of the Basic Component 
Encapsulation page. All parameter arguments must be returned with actual values.  
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Step 5: Data Query and Workflow Reduction  

Query 5.1a is made to the DC to get the locations of datasets and any attributes associated 
with it. 

Query 5.2b is made to the Pattern Catalog to get the locations of patterns and attributes. 
The query and results look similar for both queries.  

[Q5.1a]  

  SR->DC: FindDataSetLocationAndAttribs(DSi) 
  DC->SR: {DSLA | NULL} 

DSi ==> a data source id  

{DSLA} ==> data source locations and access protocols for DSi  

{NULL} ==> If NULL then the datasetid does not exist  

[Q5.1b]  

  SR->AC: FindPatternLocationsAndAttribs(PSi) 
  AC->SR: {PSLA | NULL} 

PSi ==> a pattern source id  

{PSLA} ==> pattern source locations and access protocols for PSi {NULL} ==> pattern source 
locations for pattern id does not exist  

[Q5.2a]  

  SR->AC: GetPredictedPerformance(Ci, {DODi  AMi}, &opt architecture) 
  AC->SR: {architecture PP } 

Ci ==> a component description in the adl namespace for a concrete component  

{DODi AMi} ==> data object descriptions in the teo, data, and metrics namespace for the input of 
Ci and component-argument-to-template-dataVariable mappings for Ci - dataVariables will be in 
the sr namespace and the component arguments will be in the adl namespace. Arguments refer to 
the data object inputs and outputs of the component.  

architecture ==> a specific hardware architecture  

{architecture PP } ==> architecture and predicted performance for Ci given {DODi AMi}  

[Q5.2b]  

  SR->AC: GetPredictedPerformance(Ci, {DODi  AMi}, &opt site) 
  AC->SR: {site PP} 

Ci ==> a component description in the adl namespace for a concrete component  
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{DODi AMi} ==> data object descriptions in the teo, data, and metrics namespace for the input of 
Ci and component-argument-to-template-dataVariable mappings for Ci - dataVariables will be in 
the sr namespace and the component arguments will be in the adl namespace. Arguments refer to 
the data object inputs and outputs of the component.  

site ==> a cluster or part of a cluster with homogenous arch/os/glibc (speed and memory may/can 
be different)  

{site PP} ==> site and predicted performance for Ci given {DODi AMi}  

Step 6: Workflow Ranking  
 
Not used in SR-12. 

 

Step 7: Workflow Mapping  

[Q7.1]  

  SR->AC: FindCodeLocations (Ci) 
  AC->SR:  {Li}  
 
Ci ==> a component description using the adl namespace  

Li ==> sites where Ci is located , type of component, and system information (arch,os,os version, 
glibc)  

[Q7.2]  

SR->AC: GetDeploymentRequirements(Ci, site)  
AC->SR: {R} 

Ci ==> a component description in the adl namespace for a concrete component  

site ==> a cluster or part of a cluster with homogenous arch/os/glibc (speed and memory may/can 
be different)  

{R} ==> requirements for running Ci on site  

 

Step 8: Workflow Execution  

[Q8.1]  

  SR->DC: AddDataSetIDs(DSi,DSLAi) 
  DC->SR: {t | nil} 

DSi ==> a data source id  

DSLAi ==> data source locations,access protocols and attribs for DSi  

This is related to the 5.1 query above. The information registered in 8.1 is available for 
queries during the generation of other workflows during step 5 using 5.1  
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[Q8.2]  

SR->DC: FindActualDataSetCharacteristics(DSi &opt {dc metric or    
                                         characteristic})  

  DC->SR: DMC 

DSi ==> A data source id  

{dc metric or characteristic} ==> specific data metric or data characteristic - if not provided the 
full set of metrics and characteristics are returned.  

DMC ==> data metrics and/or characteristics for the data source indicated by DSi  

 
 

 

 

5. MAJOR MILESTONES: DEMONSTRATIONS AND 
EVALUATIONS 

This section describes SR’s major milestones throughout the program. 

 
5.1 SR-6 Demonstration 
 

The objectives of SR-6 demonstration were:  
1) Demonstrate that SR can create and execute program-relevant workflows drawing 

from pre-existing SR technologies in a few months time. This serves as a proof of 
concept that:  
• A Tangram system will result in significant time savings over manually 

constructed workflows 
• A Tangram system will enable workflows that are much more complex than 

the at-most 3 steps/algorithms workflows that analysts develop today.  
2) Demonstrate that an efficient inter-algorithm data exchange mechanism can be 

implemented and integrated with the SR workflow system. The algorithm 
interface will be implemented by GU through the first instantiation of GU's 
Gather subsystem.  

 
The first objective was accomplished by the SR team on December 14, 2006. The 

workflows for this demonstration were constructed by hand from five algorithms and two 
synthetic data sources. The second objective was accomplished on February 26, 2007. 
GU provided workflow components for translating data in and out of algorithms, the data 
and algorithms were provided by SR from the December 2006 workflows. 
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Figure 7 shows the workflows used in December 2006. The 2007 workflows are 
isomorphic to Workflow 2 (W2) but they used the Gather translators. 

The workflows designed for SR-6 were designed to be appropriate for a data-to-
warning system, as envisioned by Tangram. The SR-6 workflows were designed with no 
guarantees as to the quality or accuracy of the results.  

The SR-6 demonstration used the Hats simulator to produce synthetic data sources to 
demonstrate a data to hypothesis to warnings system. The Hats simulator produces a 
variety of data grouped into 22 files (See “Hats Simulator Batch Data Sets”, J. Moody, 
Nov 2, 2006). The workflow uses only five of these possible data sources:  

• meetings: meetings between individual hats that occurred during the simulation. 
• watch list: a list of hats that are known to be malicious. 
• capabilities: a set of capabilities that exist in the simulation, either because they 

are required to attack some beacon or because some hat has them. 
• trades: exchanges of capabilities between two hats that occurred in the simulation. 
• beacon vulnerabilities: for each beacon it specifies the capabilities required to 

attack it (reflecting the vulnerabilities of that beacon). 
 
The workflows include Eagle algorithms, and to use them we had to turn legacy code 

into workflow components.  The components used include  
• GDA: group finder (CMU, Kubica)  
• BC: group finder (Newman, ISI implementation: Moody) 
• KOJAK: group finder (ISI, Adibi, Chalupsky) 
• RLP: suspicion scorer (ISI, Galstyan) 
• NetKit: suspicion scorer (NYU, Macskassy) 
• CapTracker:  non-linear tracking (ISI, Mitra, Galstyan) 
 
Several additional components were developed by SR.  
• merge:  merging the results of n components 
• filter:  selecting data views, heuristic selection of content 
• translate:  selecting data views, format conversion  
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W1: Search for group seed members then run two group finding algorithms then merge results 

(a) Original workflow 



 59

 

 

W2: W1 with group seed members coming from primary sources 

(b) ManualSeed: Seed groups are provided 
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W3: W1 with efficient execution by parallel search for group seed members 

(c) ParallelSeed: Seed groups are found through parallel computation 

Figure 7: Workflows Demonstrated in December 2006 
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Figure 8 shows an example template, workflow instance and executable workflow from 
SR-6.  We executed the first Tangram-relevant workflow using the workflow system and 
the program testbed. It is a portion of the planned SR-6 workflow focused on group 
detection. It used a small data set from Hats (about 500 hats), and was run on the ISI 
Skynet cluster that was part of the program testbed at that time. It contains 16 executable 
components. After a few weeks of design, code development, and code characterization, 
it took a few hours to create the workflow template with the Wings editor, and a few 
hours to generate the executable workflow. Note that the structure of the above workflow 
is very simple (by design), so the nodes and files in the template and the instance mirror 
one another. Figure 9 shows a workflow with parallelized seed member formation where 
this is not the case. 

 

Template: 
Generic Recipe 

Instance: 
Specifies data sources

for a template 

Executable: 
Specifies physical locations
+ data replicas for instance 

computation 

data 

 
Figure 8: Workflow Creation in SR-6 from Template to Instance to Execution 



 62

 
 (a) Parallel Seed: Workflow Instance Creation  

 

 

 
(b) Parallel Seed: Workflow Execution  

 
 

Workflow Template 
(Edited in Wings) 

Workflow Instance 
(Automatically  

generated by Wings)
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Figure 9:  Example Workflow with Parallel Seed Creation 
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The Pegasus Workflow Planner reuses existing data products on the grid to refine and 

reduce the workflow so that only those computations required are run. The existing data 
products are transferred from the remote sites to the execution locations. Figure 10 shows 
how data reuse makes computation more efficient.  The workflow on the right (b) has 
some of the same computation as the workflow on the left (a). When workflow (a) is run 
first, with reuse, the system can save the computations needed for the same portion.   

 In summary, the SR-6 demonstration provided a proof of concept of the Tangram 
system and a set of workflows to guide SR-12 and SR-18 integration discussions.   
 

 

5.2 SR-12 Demonstration  
  
The SR-12 demonstration was designed by the SEA evaluation team.  

 

The SR team contributed:  

 

(b) ManualSeed: 
with Kojak + 

GDA + merge step

(a) ManualSeed 
With GDA only 

 
Computations  
removed  
by Pegasus 

Intermediate  
data product 
already exists 
and can be reused 

30 mins,  
20 tasks 

3hrs 47 mins,  
41 tasks 

3hrs 44 mins,  
25 tasks 

10K  
entities 

18 mins,  
20 tasks 

21 mins,  
41 tasks 

17 min,  
25 tasks 

1K  
entities 

NO REUSE WITH REUSE 

 
Figure 10 :  Supporting Data Reuse Across Workflows 
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• A workflow reasoning system that can query the Data Characterization and 
Process Characterization services to properly select the data sources and 
workflow components for a given workflow request to generate workflow 
instances. To this end, the SR team:  

1. designed a workflow generation algorithm to automatically create 
executable workflows from high-level workflow requests  

2. defined APIs for DC and PC services to be invoked during that process  

3. implemented a workflow system that had these capabilities  

• A workflow execution system that can execute the workflow instances that enable 
workflow components to interact with source evidence and produce hypotheses 
that will be used by downstream workflow components using a unified 
representation provided by Graph Unification. To this end, the SR team:  

o designed a specification to convert executable codes into proper workflow 
components using a Basic Component Encapsulation schema and 
methodology  

SR-12 demonstrated automated workflow generation using externally provided data 
and component catalogs on Tangram-relevant workflows. The SR team developed a 
Workflow Generation API that specifies how the workflow generation system interacts 
with the systems being developed by other program participants.  

SR’s workflow reasoning system queries the Data Characterization and Process 
Characterization services to properly select the data sources and workflow components 
for a given workflow request to generate workflow instances. SR’s workflow execution 
system executed the workflow instances that enable workflow components to interact 
with source evidence and produce hypotheses, which were used by downstream 
workflow components using a unified representation provided by Graph Unification.  

The following subsections describe SR-12 functional and technical requirements 
defined by the SEA evaluation team that are relevant to SR.  
 

5.2.1 SR-12 Functional Requirement Relevant to SR 
 
This section summarizes SR-12 functional requirements (FR) defined by the SEA 
evaluation team that are relevant to SR.  

Functional Requirement 2 (FR-2)  

    FR-2: The SR-12 System shall demonstrate the use of more than 2 
workflow components in the workflow (Evaluate the GU inter-component 
data exchange process) 
    SEA/SR Claim: Workflow templates contain 3 classes of Workflow 
Component: Group Detection Process, Pattern Matching Process, Data 
Union Process 
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The workflow template used in the SR-12 workflow requests uses 3 types of workflow 
components: GroupDetection, DataUnion, and PatternMatching.  

FR-3  

   FR-3:  The SR-12 System shall demonstrate the ability to orchestrate 
workflow components of more than one process type (Evaluate GU ability 
to exchange data) 
    SEA/SR Claim: Workflow templates contain 3 classes of Workflow 
Component: Group Detection Process, Pattern Matching Process, Data 
Union Process 

The workflow template used in the SR-12 workflow requests uses 3 types of workflow 
components: GroupDetection, DataUnion, and PatternMatching.  

FR-4  

   FR-4:  The SR-12 System shall demonstrate the ability to instantiate 
a given workflow template in multiple ways, depending on the 
characteristics of the available dataset(s), the availability of 
suitable patterns, and/or other conditions (Evaluate the work flow 
composition process based on variances in data, search patterns or 
other work flow pre-conditions) 
    SR Claim: The workflow system invokes PC and DC services with 
constraints imposed by the workflow template and the workflow request 

SR invoked PC and DC through the following API queries:  

• Q2.1 was invoked to specialize components in the workflow template. For the 
workflow request shown above, this query was invoked 3 times and 5 components 
were returned, resulting in the generation of 4 workflow candidates from the 
original workflow.  

• Q3.1 was invoked to find valid data sources for the request. For the workflow 
request shown above, this query was invoked 4 times, each call returning 3 
bindings for the workflow, resulting in the generation of 12 workflow candidates.  

FR-5  

   FR-5: The SR-12 System shall demonstrate handling of multiple 
workflow requests concurrently  
    (Evaluate the workflow manager's ability to accept multiple 
concurrent work flow requests from TEE) 
   SR Claim: The workflow system can manage the workflow generation 
process for several requests submitted. 

Several alternative workflow requests were created and submitted concurrently to the 
workflow system.  

 



 66

FR-6  

   FR-6: The SR-12 System shall demonstrate the ability to track 
lineage, pedigree, and provenance of assertions and hypotheses during 
workflow processing (Evaluate the Tangram system's ability to acquire 
and store information about each workflow instance) 
   SR Claim: The workflow system records extensive traces of the 
workflow generation process (including queries issued and responses 
obtained, workflow candidates generated or eliminated) and of the 
workflow execution process.  Log4J is used for the workflow generation 
phases.   

A detailed trace of the generation of executable workflows for one of the requests is 
uploaded in the code repository.  

 

5.2.2 SR-12 Technical Requirements Relevant to SR 
 
This section summarizes SR-12 technical requirements (TR) defined by the SEA 
evaluation team that are relevant to SR.  

Technical Requirement-2 (TR-2)  

   TR-2: The SR-12 System shall demonstrate the ability to execute 
multiple workflow instances concurrently (Evaluate the ability to plan 
and deploy multiple concurrent workflow instances) 
   SR Claim: SR system (via Ensemble Manager and Pegasus?) will be 
capable of scheduling and initiating concurrent executions of workflow 
instances on TanGrid. 
   SR Claim: SR system (via Ensemble Manager and Pegasus?) will ensure 
no node is used for more than one Workflow Component execution at a 
time (due to GATHER implementation limitation) 

TR-3  

   TR-3: The SR-12 System shall demonstrate the ability to tailor/scope 
workflow instances on the basis of characteristics of available 
resources (Evaluate SR (Pegasus) mapping of workflow processes to 
hardware resources based on PC process installation information) 
   SR Claim: Pegasus will select available nodes on the basis of 
hardware requirements provided by PCat for each Workflow Component 

TR-4  

   TR-4: The SR-12 System shall encode and interpret workflow templates 
referencing process types available via the Process Catalog ontologies 
(e.g. Capability Layer of ADL) (Evaluate SR's ability to construct 
workflows consistent with the PC definition of process types) 
   SR Claim: Workflow templates created by hand referencing terms 
available in PC process ontology 
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The workflow used in the request above used the following classes from the process 
ontology namespace: GroupDetectionProcess, DataUnionProcess, and 
PatternMatchingProcess.  

TR-5  

    TR-5: The SR-12 System shall use the Process Catalog in the course 
of instantiating and  
     executing the workflow 
    SR Claim: Workflow queries PCat to generate workflows via Q2.1, 
Q4.2, Q4.5, Q5.2,  
     Q7.1, Q7.2 

Q2.1 to PC was invoked 5 times, Q4.2 to PC was invoked 36 times, and Q4.5 to PC was 
invoked 36 times.  

    SR Claim:  Workflow system able to generate candidates and create 
executable DAXes on the  
     basis of PCat responses for Q2.1, Q4.2, Q4.5, Q5.2, Q7.1, Q7.2 

Q2.1 to PC was used to create 4 workflow candidates, Q4.2 and Q4.5 to PC were used 
generate executable DAXes for 12 workflow candidates.  

TR-6  

    TR-6: The SR-12 System shall use the Data Characterization service 
to determine which  
     workflow template to execute 
    SR Claim: Workflow queries DMS to generate workflow candidates via 
Q3.1, Q4.1, Q5.1a 

Q3.1 to DC was invoked 4 times, Q4.1 to DC was invoked 4 times.  

    SR Claim: SR able to create executable DAX's on the basis of PCat 
responses for Q3.1, Q4.1, Q5.1a 

Q3.1 to DC was used to create 12 workflow candidates, and Q4.1 was used in the 
generation of DAXes.  

TR-11  

    TR-11: The SR-12 System shall demonstrate the ability to exchange 
data between workflow components using the GU graph specification 
    SR Claim: SR components (via Pegasus / GridFTP) can physically move 
files produced on one processing node to another 
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5.3 SE-18 Evaluation  
 
SR’s contributions to the SE-18 Evaluations include: 

 Data Reuse: SR invokes DC services for registering workflow data products 
including intermediate products.  The extended workflow generation API (Q4.3a 
in particular) allows reuse of existing data to save computation 

 A workflow ranking algorithm that takes into account ingest time for input data 
sources. The ranking algorithm is described in Section 3.2. 

 The Ensemble Manager (EM) system was developed to support multiple 
concurrent workflow runs.  More information about EM is available below in 
Section 3.3. 

 SR provided detailed Workflow System Logging records. 

 The Tangram Grid and software deployment are supported by SR. SR provided 
documentation to implement an automated site catalog as well as instructions on 
how to install the Tangrid Components and SR Functions. 

 An extended Workflow Generation API: Workflow Generation API Version 2.1 
was developed and released for the SE-18 evaluation.  

 

Figure 1 highlighted the new SR capabilities developed for SE-18. The following 
summarizes the SE-18 metrics and requirements relevant to SR.  

 

5.3.1 SE-18 Metrics and Requirement Relevant to SR 
 

SR implemented capabilities including automatic workflow generation, workflow 
ranking, and ensemble manager support the following SE-18 metrics and requirements.  

• FM-WF-A-1: Manual construction of a template by a person intending to translate 
an analytic line of inquiry into an abstract workflow template. Per SEA’s request, 
SR provided a brief document on how to write requests 

• FM-WF-A-2: Time to validate / generate candidate workflow instances Not to 
Exceed (NTE) 2 minutes. Per PMO's request, SR has created a discussion page on 
the workflow generation time metric (FM-WF-A-2). The newly developed 
Ensemble Manager manages all workflow generation steps (steps 1-8). 

• FM-WF-A-3FM-WF-A-3: Time to set up workflow ranking experiments NTE 1 
hour. For this SR have developed extensions to workflow ranking (step 6 of 
workflow generation algorithm) 
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• FM-WF-A-4: Time to collect experiment metrics NTE 120 hours. SR’s design of 
logging ontology and format supports this. 

• FM-HW-A-1: Deploy Tangram Function on new hardware to include it in the 
Tangrid NTE 2 days. SR’s Tangram Grid deployment support includes 
instructions to deploy Tangram Grid Functions on a new hardware  

• FM-HW-M-1: Any changes to hardware configurations for a node in TanGrid are 
reported / captured by any resource requiring an understanding of hardware 
configuration / capabilities. SR’s Tangram Grid deployment support includes 
documentation to implement probes to update an automated Site Catalog. 

• FM-SW-M-1: Changed Tangram Component: NTE 30 minutes to upgrade / 
reinstall, configure, and make operational any releasable updates to a Tangram 
System Component. SR’s Tangram deployment support  instructions on how to 
build/install/configure Tangrams SR Components . 

• SE18-FR1: The System's execution shall be fully automated. This is supported by 
the existing automated workflow generation algorithm. 

• SE18-FR2: The System shall operate continuously. SR’s Ensemble Manager can 
be configured to support continuous operation. 

• SE18-FR8: For SE-18, at least 50 distinct lines of inquiry can be running 
concurrently (for SE-18, a line of inquiry will be equivalent to a workflow 
request). The Ensemble Manager handles multiple requests.  

• SE18-FR9: The System shall log all data accesses, to include at least time of 
access, LOI, workflow instance in order to provide a full audit log of data-related 
activities conducted by the System. The new Workflow System Logging supports 
necessary audit log. 

• SE18-FR10: The System shall enable the automated introduction and 
characterization of new workflow components to a Tangram System environment 
without interrupting surveillance and warning functions. This is supported by the 
automated workflow generation algorithm. 

• SE18-FR11: The System shall enable the automated characterization and 
ingestion of newly identified data sources without interrupting surveillance and 
warning functions. This is supported by the automated workflow generation 
algorithm. 

• SE18-FR12: The System shall enable the automated inclusion and instantiation of 
new workflow requests without interrupting surveillance and warning functions. 
The Ensemble Manager handles multiple concurrent requests.  
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• SE18-FR13: The System shall enable the inclusion of new hardware into its 
operating environment without interrupting surveillance and warning functions 
SR’s Tangram Grid deployment support includes probes to populate Site Catalog. 

• SE18-FR14: The System shall enable the automated introduction and 
characterization of modified workflow components to a Tangram System 
environment without interrupting surveillance and warning functions. This is 
supported by the automated workflow generation algorithm. 

• SE18-FR15: The System shall enable the automated characterization and 
ingestion of modified data sources without interrupting surveillance and warning 
functions. This is supported by the automated workflow generation algorithm. 

• SE18-FR16: The System shall enable the automated inclusion and instantiation of 
modified workflow requests without interrupting surveillance and warning 
functions. The Ensemble Manager handles multiple concurrent requests.  

• SE18-FR17: The System shall enable the removal of existing execution hardware 
from its operating environment without interrupting surveillance and warning 
functions. This is supported by the existing workflow mapping algorithm. 

• SE18-TR1: The SE-18 System shall encode and interpret workflow templates 
referencing process types available via the Process Catalog ontologies (e.g. 
Capability Layer of PDL). This is supported by the automated workflow 
generation algorithm. 

• SE18-TR2: The SE-18 System shall demonstrate the ability to accept multiple, 
distinct workflow request concurrently. The Ensemble Manager handles multiple 
concurrent requests. 

• SE18-TR3: The SE-18 System shall demonstrate the ability to generate and rank 
workflow instances from multiple workflow requests. SR extended the workflow 
ranking (step 6 of workflow generation algorithm) to rank workflow instances 
from the same workflow request. 

• SE18-TR4: The SE-18 System shall demonstrate the ability to tailor/scope 
workflow instances on the basis of characteristics of available hardware 
resources. This is supported by the existing workflow mapping algorithm. 

• SE18-TR5: The SE-18 System shall use the Process Catalog in the course of 
instantiating the workflow. This is supported by the automated workflow 
generation algorithm. 

• SE18-TR14: The SE-18 System shall demonstrate the ability to track pedigree 
(source identification) of assertions and hypotheses during workflow processing. 
The Workflow System Logging will support necessary audit logging. 
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• SE18-TR15: The SE-18 System shall demonstrate the ability to track lineage 
(audit trail) of assertions and hypotheses during workflow processing. The 
Workflow System Logging will support necessary audit logging. 

• SE18-TR17: The SE-18 System shall demonstrate the ability to orchestrate 
workflow components of more than one process type. This is supported by the 
automated workflow generation algorithm. 

• SE18-ER4: The SE-18 System shall demonstrate the ability to execute workflow 
components on multiple operating system types and versions. This is supported by 
the existing workflow mapping algorithm. SR deployed an ISI testbed  with a 
cluster containing a variety of architectures and operating systems including x86 
and x86_64 architectures with Debian and Redhat Linux OS as well as Windows 
XP.  

 

 

6. SUPPORT FOR PROGRAM EVALUATIONS 

SR has supported program-wide evaluations with testbed setup and workflow system 
logs. The following sections describe each. 

6.1 Program Testbed  
 
The SR team has worked on setting up and operating a program-wide testbed. All the 
program participants are sharing resources in the testbed, including computing and 
storage resources, software and services, and data sources. Figure 11 shows the Tangram 
Testbed at the end of the program. 
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Figure 11: Tangram Testbed 

 

The first milestone of the program testbed activity was to include at least one node 
from each program component and at least one node in the Research and Development 
Experimental Collaboration (RDEC) facility and to install the workflow system and grid 
software to test initial connectivity. This was accomplished on January 15, 2007.  

Currently two active testbeds operate at ISI in the form of a Viz  Cluster,  an 8 node 
x86 Cluster running Debian linux and a Wind Cluster, a  5 node x86_64 linux cluster 
running Fedora Core and one  x86 Windows XP  node.  

The testbed is also deployed at SEA on artemis.stdc.com and ttwo, tthree, tfour and 
tseven.stdc.com nodes.  

Changes from SR12 include adding support for Allegro Lisp and Allegro  Graph 
servers on all testbeds and the Ganglia monitoring system  running at SEA which 
monitors all the nodes and services in the  Tangram Testbed. 
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6.2 Logging Support  
 
The Tangram program adopted Log4j1a widely used logging library for Java, as its 
underlying logging mechanism. Log4j compatible libraries are available for a number of 
other programming languages including C, Perl, and Python. Log4j provides a number of 
features including the ability to dynamically redirect logging statements to different 
locations, for example, a local file or SEA’s logging server as well as filtering out 
logging messages based on their level of detail.  While Log4j provides an infrastructure 
for integrating logging with applications, it does not specify the format, structure, or 
content of those logs.  Because Tangram has a distributed architecture, it is necessary to 
be able to correlate logs generated by multiple components within the architecture. To 
facilitate this activity, SR has defined a logging format and ontology. Additionally, the 
Workflow Generation API was extended to support the passing of appropriate logging 
related identifiers to the Data Catalog, Process Catalog and wrapped components. Finally, 
SR developed libraries that assist in the creation of logs that are compatible with the 
specified format and logs.  
 

6.2.1 Logging Format 
 
We adopted a format for logs from the technical report Grid Logging: Best Practices 
Guide2 produced by the Center for Enabling Distributed Petascale Science3.  This format 
has a number of benefits including a simple to parse format, extensibility, and scalable 
processing [Gunter et al., 2005]. Log messages are defined in terms of key=value pairs. 
In each log message, there are a number of required pairs, which are as follows (Note that 
the key is given in parenthesis).  
 

• A time stamp (ts) that specifies when the log statement was generated. The 
timestamp is specified in terms of the ISO8601 time standard [ISO-8601, 1888]. 
All times are given in UTC.  

• A message identifier (msgid) that uniquely identifies each log message.  
• An event name (event) that defines the type of event that this log message pertains 

to. Events can be seen as a program activity. For example, during the planning of 
a workflow, Pegasus selects the sites at which jobs should be executed, this event 
or program activity is called site selection and is given the event type 
event.pegasus.siteselection. Thus, all log messages generated by 
Pegasus during site selection would have the site selection event type. 

o An event name may have suffix, either “.start” or  
“.end”, appended to it to denote the beginning and end of an event.  

o Each event name is defined in a namespace that begins with event and 
includes the program or software component that the event occurs in. 

                                                 
1 http://logging.apache.org/log4j/ 
2 http://www.cedps.net/images/f/fd/CEDPS-troubleshooting-bestPractices.pdf 
3 http://www.cedps.net/ 

http://logging.apache.org/log4j/
http://www.cedps.net/images/f/fd/CEDPS-troubleshooting-bestPractices.pdf
http://www.cedps.net/
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• An event identifier (eventId) that uniquely identifies this event from other events. 
This event identifier is shared across log messages for the same event so that 
messages about the same event can be associated with one another. 

• A key=value pair that defines the entity/data that is being processed during the 
event. For example, during planning, Pegasus is operating on a workflow 
instance, known as a dax. Thus, each log message would include the pair 
dax.id=<identifier for the dax>. 

Beyond these required key=value pairs, log messages can have additional key=value 
pairs called event attributes that allow additional information about the events to be 
extracted from log messages.  
 

6.2.2 Logging Ontology 
 
The Logging Ontology defines the keys and the types for the values associated with those 
keys.  We now highlight the core parts of the ontology. A full list of ontology terms can 
be found on the tangram wiki site.  The definitions provided in this ontology were 
motivated by another ontology designed to organize performance data for Grid-based 
workflow systems [Truong et al , 2007]. In the previous section, we introduced the three 
core elements of the ontology: entity identifiers, event types, event attributes.  

The entity identifiers specified in the Logging Ontology map to the major data 
structures that are handled by the workflow system. To ensure that these data items can 
be found within the logs, universally unique ids are used. To ensure uniqueness, we use 
identifiers that follow the RFC4122 specification4 but may have additional strings 
prepended or appended to the identifier.  

The following entity identifiers are defined by the Ontology: Request Portfolio 
Identifier (portfolio.id), Workflow Request Identifier (request.id ), Workfow Instance 
Identifier (dax.id), Executable Workflow Identifier (dag.id), Job Identifier (dag.id + 
job.id).5  

These entity identifiers are key to being able to track the provenance of the output of 
running a portfolio. If the hierarchy of ids from the Job Identifier to the Portfolio 
Identifier is maintained, then when analyzing the logs, a user can trace back to the 
portfolio that initiated the production of a particular result.  To ensure that this hierarchy 
is maintained, we introduce a specialized type of log message called  

event.id.creation, which enables developers to specify the inheritance 
relationship between entities. The format of this message is as follows:  
 

parent.id.type = (key of the parent id) 
parent.id = (value of the id) 
child.ids.type = key of the child id 
child.ids = {value of the child id, ...}6  

                                                 
4 http://www.ietf.org/rfc/rfc4122.txt 
5 To provide context to a job.id, it is always paired with the id of the executable workflow that the job 
pertains to.  
6 Children are assumed to be of the same type. 

http://www.ietf.org/rfc/rfc4122.txt
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The second element of the ontology is the events within the SR system. These events 

correspond to the major processing activities within the processing and execution of a 
portfolio. These include events for the management of portfolios (i.e. the ensemble 
manager), workflow generation, planning, and finally execution.  

 The final element of the ontology is the various additional event attributes that can be 
found within log messages. Examples of these attributes, include the hostname and 
operating system on which the workflow system runs (system.hostname, system.os), the 
contents of queries to the Process Catalog and Data Catalog (query.input), as well as 
optional human readable messages (msg). Additionally, SR generates event attributes for 
information gathered during job execution by the job wrapping mechanism Kickstart 
[Voeckler et al., 2006].   

Bellow is an illustration of a log message following the Logging Format and 
Ontology we have defined:  

ts = 2007-12-08T18:39:19.372375z  
msgid = 77285E73-49AB-4EAB-AFED-BFCA90E4CEF4 
event = event.pegasus.siteselection.start 
eventId = 9AA64C69-D449-428A-8FBC-F46C8E237F40 
dax.id = 550e8400-e29b-41d4-a716-446655440000 
prog = "Pegasus" 
system.hostname = prov.isi.edu 
msg = "Doing site selection" 

 

6.2.3 Extension to the Workflow Generation API for Logging 
 
In order to ensure that logs generated by different components within the Tangram 
architecture can be successfully correlated, we modified the Workflow Generation API to 
pass the appropriate entity identifiers (called logging data identifiers within the API) to 
all external components including the underlying wrapped components. Thus, from the 
logs, one can see how the processing and execution of a portfolio impacts all the 
components within the Tangram system.  

 

6.2.4 Client Side Logging Library   
 
To ease the integration of this logging format with the existing Tangram software, we 
developed a library that supports the generation of properly formatted log messages. 
Additionally, the library supports the tracking of events, creation of log messages for 
those events and automatic generation of some identifiers as well as time stamps. Using 
this library, developers do not have to track event id information or repeat entity 
identifier information for every log message. While this library was developed for 
internal use by SR, it has also been adopted by other program participants.  
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7. SOFTWARE RELEASES 

ISI has developed and released three core pieces of software that correspond to the 
architecture shown in Figure 1: Ensemble Manger, Wings (i.e. workflow generation), and 
Pegasus (i.e. workflow ranking,  mapping and execution). Here we provide installation 
instructions for each of these software components. In addition to these instructions, we 
provide instructions for installing the Grid Services (such as  Condor and Globus) that are 
required to execute workflows on the TanGrid. 
 
7.1 Installation of the SR Workflow System 
 
This section provides installation information for the SR workflow system. 

 

7.1.1. Required Software 
These are required for installing the SR workflow system. 

• ANT  
• JAVA 1.5+  
• PEGASUS 2.2.0CVS  
• WINGS  
• CONDOR 7.1.0 only.  
• MYSQL  

 

7.1.2. Build and Install Wings  

Fetch Wings Code 
% svn co 
https://tangram.stdc.com/svn/SystemResearch/branches/wings/se18-rev2 
 
 

Wings Compilation, Installation & Running 
 
% cd se18-rev2 
 
% ant jar 
- Creates wings.jar in lib/ directory (and creates a build/ directory) 
 
% ant clean [optional] 
- Removes the build/ directory 
 
% chmod 755 awg 
- Set execute permissions on the "awg" file 
 
% export WINGS_HOME=/path/to/wings/dir [optional] 

https://tangram.stdc.com/svn/SystemResearch/branches/wings/se18-rev2
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- The main wings directory (directory containing the "awg" file) 
- If not set, "awg" script will automatically set WINGS_HOME to the 
directory where it is located 
 
% export PATH=$WINGS_HOME:$PATH [optional] 
- If you would like to put the "awg" script in your shell path 
- If you didn't set WINGS_HOME above, then use: 
  % export PATH=/path/to/wings/dir:$PATH 
 
% vi wings.properties (or any other editor) [optional] 
Check Property "ontology.root.dir" 
- Change it's value if you would like to use a local copy of the wings 
ontology, templates, and seeds.  
- If not set (or if the set directory does not exist), it defaults to 
<wings_home>/ontology 
 
- The following properties can be set via the properties file as well 
as overridden via the command line. 
 - logs.dir 
 - output.dir 
 
% awg -h (to check options to the script) 
 
Subnote: 
- The seed files are present in the ontology/se18/seeds directory 
- The template files are present in the ontology/se18 directory 
 
 

Seed Validation 
% awg -v -s <seed name> 
- This will print out the seeded template in OWL as Wings understands 
it. 
- A User can then look at the interpreted template to make sure it 
corresponds 
  to what the user wants. 
 
 

Example Runs 
% awg -s SE18-SingleGroupDetector-Tangram 
- awg simply runs the seed "SE18-SingleGroupDetector-Tangram" with 
default options 
  and the default configuration file from <wings_home>/wings.properties 
 
% awg -c $HOME/wings.properties -s SE18-SingleGroupDetector-Tangram -l 
/tmp/logs -o /tmp/output 
 
- This means that awg runs the seed "SE18-SingleGroupDetector-Tangram" 
and stores the logs in /tmp/logs 
  directory, and the output daxes in /tmp/output directory, and it 
picks up a local configuration  
  file from $HOME/wings.properties 
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Provenance DB Installation (Optional) 
The workflow generation provenance data is currently stored in a 
database at seagull.isi.edu. 
 
If a local database is required, then please use the file "wgpc.sql" to 
populate the database. Then,  
edit the wings.properties file and modify wgpc database properties. 
 
Note that this provenance data is different from what is sent over to 
SEA via log files. 
That will continue to be sent over via log4j. 
 

Set env WINGS_HOME to the Wings directory  

$ export WINGS_HOME=<path to wings>  

• source $WINGS_HOME/setenv.sh (if your shell is bash)  

$source $WINGS_HOME/setenv.sh  

 

7.1.3. Build Pegasus  

 

Download Pegasus from SVN at  

https://tangram.stdc.com/svn/SystemResearch/branches/pegasus/current/  

Set env PEGASUS_HOME to the Checkout Directory  

$export PEGASUS_HOME=<path to pegasus-svn-checkout>  

source $PEGASUS_HOME/setup-devel.sh (if your shell is bash)  

$ source $PEGASUS_HOME/setup-devel.sh  

Build pegasus using ant  

$ ant clean dist  

7.1.4. Install Pegasus  

 

Copy $PEGASUS_HOME/dist/pegasus-*.tar.gz and untar it  

$ cp $PEGASUS_HOME/dist/pegasus-binary-*.tar.gz /tmp $ cd <path to 
software installation directory> $ gtar zxvf /tmp/pegasus-binary-
*.tar.gz  

https://tangram.stdc.com/svn/SystemResearch/branches/pegasus/current/
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Set env PEGASUS_HOME to the binary installation path  

$ export PEGASUS_HOME=</path to binary install>  

Remove wings jar included in Pegasus  

$ rm $PEGASUS_HOME/lib/wings.jar  

 

7.1.5. Build Ensemble Manager  

 

Download Ensemble Manager code from SVN at  
https://tangram.stdc.com/svn/SystemResearch/branches/ensemble/current/ 

 

Set env ENSEMBLE_HOME to the checked out directory  
 $ export ENSEMBLE_HOME=<path checked out> 

 

Source $ENSEMBLE_HOME/setup-devel.csh if your shell is CSH or setup-devel.sh if 
your shell is BASH  

 $ source $ENSMEBLE_HOME/setup-devel.sh 

 

Run ant clean package  
 $ant clean package 
Buildfile: build.xml 
 
clean: 
   [delete] /nfs/asd2/gmehta/jbproject/Ensemble/dist not found. 
   [delete] /nfs/asd2/gmehta/jbproject/Ensemble/build not found. 
 
init: 
    [mkdir] Created dir: 
/nfs/asd2/gmehta/jbproject/Ensemble/dist/ensemble 
    [mkdir] Created dir: /nfs/asd2/gmehta/jbproject/Ensemble/build/src 
     [echo] full ISO timestamp:  
 
compile: 
    [javac] Compiling 28 source files to 
/nfs/asd2/gmehta/jbproject/Ensemble/build/src 
 
... 
... 
 [mkdir] Created dir: 
/nfs/asd2/gmehta/jbproject/Ensemble/dist/ensemble/var 
     [copy] Copying 5 files to 
/nfs/asd2/gmehta/jbproject/Ensemble/dist/ensemble 

https://tangram.stdc.com/svn/SystemResearch/branches/ensemble/current/
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     [gzip] Building: 
/nfs/asd2/gmehta/jbproject/Ensemble/dist/ensemble.tar.gz 
   [delete] Deleting: 
/nfs/asd2/gmehta/jbproject/Ensemble/dist/ensemble.tar 

 

A tarball will be created in $ENSEMBLE_HOME/dist/ensemble.tar.gz  

 

7.1.6. Install Ensemble Manager  

 

Copy the binary tarball built in the earlier step to an installation location and untar it  
 $ gtar zxvf $ENSEMBLE_HOME/dist/ensemble.tar.gz 

 

Set environment ENSEMBLE_HOME to the untarred directory  
 export ENSEMBLE_HOME=<path to ensemble binary directory> 

 

Configure other paths in correct order  

$ unset CLASSPATH  

$ source $WINGS_HOME/setenv.sh  

$ source $PEGASUS_HOME/setup.sh  

$ source $ENSEMBLE_HOME/setup.sh  

 

7.1.7. Create the Ensemble Data Base (DB) 

 

As user root create a db for storing the ensemble schema in MySQL  

create database <databasename>;  

Add a username and password which has access to this db  

grant all on <databasename>.* to <username>@"<hostname>" identified by 
"<password>";  

flush privileges;  
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Populate the created Db with the ensemble schema from 
$ENSMEBLE_HOME/sql/ensemble.sql  

mysql -u <username> -p databasename < $ENSEMBLE_HOME/sql/ensemble.sql;  

 

7.1.8. Edit the Ensemble configuration file 

 

Edit the $ENSEMBLE_HOME/etc/properties or create a file $HOME/.ensemblerc  
 
condor.home=<path to condor install home directory> 
pegasus.home=<path to pegasus install home directory $PEGASUS_HOME> 
wings.home=<path to wings install> 
ensemble.db.url=<jdbc url to ensemble db . e.g. 
jdbc:mysql://smarty.isi.edu/ensembledb> 
ensemble.db=MySQL 
ensemble.db.user=<dbusername> 
ensemble.db.password=<dbpassword> 
ensemble.localdir=<path where the ensemsble workflows are planned and 
dags are generated. Default is $ENSEMBLE_HOME/var> 

7.1.9. Edit Log4j.configuration file 
 
log4j.rootCategory=DEBUG, File, Console, Socket 
 
log4j.logger.anchor.datametrics=OFF 
log4j.logger.com.hp.hpl.jena=OFF 
log4j.logger.org.griphyn=DEBUG 
log4j.logger.pegasus=DEBUG 
log4j.logger.edu.isi=DEBUG 
 
# 
# The default file appender 
# 
log4j.appender.File=org.apache.log4j.RollingFileAppender 
log4j.appender.File.Threshold=DEBUG 
log4j.appender.File.File=/tmp/ensemblemanager.log 
log4j.appender.File.layout=org.apache.log4j.SimpleLayout 
log4j.appender.File.Append=true 
log4j.appender.File.MaxFileSize=100MB 
 
 
# 
# Console Appender 
# 
log4j.appender.Console=org.apache.log4j.ConsoleAppender 
log4j.appender.Console.layout=org.apache.log4j.SimpleLayout 
log4j.appender.Console.Threshold=INFO 
 
 
# 

mysql://smarty.isi.edu/ensembledb
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# The Socket Appender 
# 
log4j.appender.Socket=org.apache.log4j.net.SocketAppender 
log4j.appender.Socket.Threshold=INFO 
log4j.appender.Socket.RemoteHost=artemis.stdc.com 
log4j.appender.Socket.Port=40940 
log4j.appender.Socket.ReconnectionDelay=5000 
log4j.appender.Socket.LocationInfo=true 

The sample log4j.properties shown here is shipped in $ENSEMBLE_HOME and is used 
by default. You can modify any of the properties in the 
$ENSMEBLE_HOME/log4j.properties or provide an alternative log4j.properties file by 
passing the option -Dlog4j.configuration=file:/path/to/log4j.properties/file  

Note that you need to add the following entries to any non standard log4j.properties file 
for all the logging to appear correctly.  

log4j.logger.anchor.datametrics=OFF 
log4j.logger.com.hp.hpl.jena=OFF 
log4j.logger.org.griphyn=DEBUG 
log4j.logger.pegasus=DEBUG 
log4j.logger.edu.isi=DEBUG 
 
 

 
7.2 Grid Services 
 
This section describes how to set up a node in the program testbed, get certificates, and 
install the workflow system and grid software. 

 

7.2.1 Linux Headnode Installation 

 

Required Software 

Head Node/Server (Each site should have at least one head node and 
several worker nodes)  

OS : Linux native or Linux VM.  

Software packages :  

1. Ant 1.7  
2. Java 1.6  
3. Allegro Lisp, Allegro Cache, Allegro Graph 8.1 with latest 

updates 
4. ganglia 3.0.6 or 3.0.7  
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5. condor 7.1.3  
6. globus 4.0.7 or 4.0.8 
7. Tangram Software stack  

The easiest way to install for several machines if they share a shared file system is to 
install the software on the shared file system.  

e.g. /nfs/software  

create directories for each package eg.  

cd /nfs/software  

mkdir -p ant/src java/src ganglia/src condor/src globus/src  

 

Install Ant 
Download ant  

cd /nfs/software/ant/src wget http://wind.isi.edu/software/apache-ant-
1.7.0-bin.tar.gz  

cd /nfs/software/ant tar zxvf src/apache-ant-1.7.0-bin.tar.gz  

symlink the installation directory to default  

ln -s apache-ant-1.7.0 default  

add the following paths to /etc/profile  

export ANT_HOME=/nfs/software/ant/default export 
PATH=$ANT_HOME/bin:$PATH  

 

Install Java 
Download java  

cd /nfs/software/java/src  

wget http://wind.isi.edu/software/jdk-1_5_0_15-linux-i586.bin  

wget http://wind.isi.edu/software/jdk-6u5-linux-i586.bin  

chmod 755 *.bin  

cd /nfs/software/java  

sh src/jdk-1_5_0_15-linux-i586.bin  

Read the License. Type Yes at the end. The automated installer will 
install java 1.5  

Symlink the jdk 1.5 to default  

sh src/jdk-6u5-linux-i586.bin  

Read the License. Type Yes at the end. The automated installer will 
install java 1.6  

http://wind.isi.edu/software/apache-ant-1.7.0-bin.tar.gz
http://wind.isi.edu/software/apache-ant-1.7.0-bin.tar.gz
http://wind.isi.edu/software/jdk-1_5_0_15-linux-i586.bin
http://wind.isi.edu/software/jdk-6u5-linux-i586.bin
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Install Gaglia 

Ganglia is a monitoring system that needs to run on each node. It consists of 3 parts:  

1) gmond daemon that needs to be installed on each node, 2) gmetad that needs to be run 
on the head node or one of the nodes as a gatherer and 3) ganglia-web module which 
displays the information and graphs.  

Ganglia is available for most distributions via standard yum and apt repositories. If you 
can't find them you can install tarballs from http://www.ganglia.org. A system admin just 
needs to run the command on all nodes. Depending on your Linux installation you may 
need the following extra packages perl-Compress-zlib perl-XML perl-XMLParser Sqlite  

   yum install gmond         

or  
   apt-get install ganglia-monitor libganglia1 

And then on the head node:  
   yum install gmetad  

or  
   apt-get install gmetad 

Also:  
   yum install ganglia-web 

or  
   apt-get install ganglia-web          

 
If you cannot find these packages you may want to do  

yum list ganglia  

or  
apt-cache search gmond gmetad ganglia 

You can also download the ganglia packages from the ganglia website and install them 
manually.  

After installation copy the gmond.conf file from http://wind.isi.edu/software/gmond.conf 
to /etc/gmond.conf on each node  

• Modify the gmond.conf file for your setup.  

o Edit the following section and put values for your cluster.  

http://www.ganglia.org
http://wind.isi.edu/software/gmond.conf


 85

cluster {  

 name = "Windward"  
 owner = "ISI / CGT"  
 latlong = "N30.0 W122.23"  
 url = "http://wind.isi.edu/ganglia"  

}  

o edit the udp_send_channel section and change the mcast_join hostname/ip 
to be the hostname where your gmetad daemon is running.  

udp_send_channel {  

 mcast_join = wind.isi.edu 
 port = 8649  
 ttl = 1  

}  

• Copy the gmetad.conf file from http://wind.isi.edu/software/gmetad.conf to 
/etc/gmetad.conf on the node running the gmetad daemon.  

o change the gridname to your Grid name.  
o Change trusted_hosts to add wind.isi.edu and 128.9.72.178 if not already 

there.  
o Send to gmehta@isi.edu the host/ip info where your gmetad is running.  

• Start all the gmond daemons by running the /etc/init.d/gmond and 
/etc/init.d/gmetad scripts.  

• If you installed the ganglia-web package then you may additionally need to start 
your httpd server to show graphs. Otherwise your site will still be displayed on 
the wind.isi.edu/ganglia url  

Install Condor 

• Download and untar condor version 7.1.3 from http://cs.wisc.edu/condor for your 
linux os and architecture. Download the dynamic tar.gz packages instead of 
RPM's  

• You may additionally need to install compat-libstdc++ libraries if your condor 
installation does not work. You will get an error when you try to start condor and 
this will be in the logs.  

• After untaring in /nfs/software/condor/src/condor-7.1.3 run the ./condor-configure 
script  

o ./condor_install --install-dir <path to installation> --
make-personal-condor --owner=condor  

http://wind.isi.edu/ganglia
http://wind.isi.edu/software/gmetad.conf
mailto:gmehta@isi.edu
http://cs.wisc.edu/condor
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(the make personal condor is only if you are running a single node cluster.  

If you plan to install condor for multiple nodes, then you may want to make the head node 
just act as a submit node --type=submit and select some other node to be a central 
manager which normally does not run any job.  All the cluster nodes will then be of 
type=execute.) 

o The script may prompt you to specify local condor directory. Set them to a 
non shared file system.  

o If you plan to install condor also as a scheduler for various nodes in the 
cluster you will need additional configuration on each node.  

o On each node set the CONDOR_HOST to a machine acting as the central 
manager. This is generally the machine where your ran the condor-
configure command as --make-personal-condor or as --type=manager.  

Check the condor_config file written in path-to-installation/etc/condor_config  

You may additionally need to change an entry in the condor_config file where it says 
HOSTALLOW_WRITE to be *.yourdomain, *.isi.edu, *.stdc.com  

 
Set env variables PATH=<path to condor/bin>:<path to condor/sbin>:$PATH 
CONDOR_CONFIG=<path to condor/etc/condor_config>  

Once condor is installed run the the command as root.  

/nfs/software/condor/<path where condor was installed>/sbin/condor_master  

You should see several condor daemons start up. e.g. master, collector, negotiator( if your 
machine is set to manager), schedd (if your machine is set to submit), startd (if your 
machine is set to execute) or all of them if you chose (personal-condor).  

You can either write a inetd script to start your condor automatically at start time or 
modify the file in /nfs/software/condor/<install>/examples/condor.boot and install it in 
the appropriate inetd locations.  

Install Globus 

Download globus 4.07 binary from www.globus.org for your system.  

save it in /nfs/software/globus/src  

• Untar the binary tarball  

• Run the command  
o ./configure --prefix=/nfs/software/globus/4.0.7 --enable-wsgram-condor --

disable-tests --disable-wstests  

http://www.globus.org
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(If you are running torque/pbs or some other scheduler other then condor you will need to 
do --enable-wsgram-pbs or --enable-wsgram-lsf etc.)  

• Globus will be installed in /nfs/sofware/globus/4.0.7.  
• Make a symlink from 4.0.7 to default  

• If you install globus on a shared file system you may want to move the globus/var 
and globus/tmp directories to a local file system and symlink them from the 
installation directory e.g.  

cd /nfs/software/globus/4.0.7 mkdir /var/spool/globus mv var 
/var/spool/globus/var mv tmp /var/spool/globus/tmp  

ln -s /var/spool/globus/var var ln -s /var/spool/globus/tmp tmp  

• You will need to write several files to enable globus services.  
• To start with  

o Write a file called globus-gatekeeper in /etc/xinetd.d directory  

service globus-gatekeeper 
   { 
      socket_type  = stream 
      protocol     = tcp 
      wait         = no 
      user         = root 
      server       = /nfs/software/globus/default/sbin/globus-
gatekeeper 
      server_args  = -conf /nfs/software/globus/default/etc/globus-
gatekeeper.conf 
      disable      = no 
      env          = LD_LIBRARY_PATH=/nfs/software/globus/default/lib 
      env         += GLOBUS_LOCATION=/nfs/software/globus/default 
     env         += GLOBUS_TCP_PORT_RANGE=40000,41000 
   } 

o Write a file called gridftp in the same directory  

service gridftp 
    { 
            instances               = 100 
            socket_type             = stream 
            wait                    = no 
            user                    = root 
            server                  = 
/nfs/software/globus/default/sbin/globus-gridftp-server 
            server_args             = -i -d info -l 
/var/spool/globus/var/gridftp.log 
            log_on_success         += DURATION USERID 
            log_on_failure         += USERID 
            nice                    = 10 
            disable                 = no 
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            env                    += 
GLOBUS_LOCATION=/nfs/software/globus/default 
            env                    += 
PATH=/nfs/software/globus/default/bin:/nfs/software/globus/default/sbin 
            env                    += 
LD_LIBRARY_PATH=/nfs/software/globus/default/lib 
           env         += GLOBUS_TCP_PORT_RANGE=40000,41000 
    } 

• edit all the paths to the globus software mentioned in the above file for your 
environment.  

• edit the GLOBUS_TCP_PORT_RANGE to define the ports which you have 
poked in your firewall.  

• edit the file /etc/services and add the lines  

gridftp 2811/tcp globus-gatekeeper 2119/tcp  

• Restart xinetd  

• Start the gsissh server by first copying the file 
/nfs/software/globus/4.0.7/sbin/SXXsshd to /etc/init.d/gsisshd  

• cd /etc/init.d  
• Run /sbin/chkconfig --add gsisshd  

• Edit /nfs/software/globus/4.0.7/etc/ssh/sshd.conf  
• Uncomment the port line on the top and change it from 22 to 40022  

• Start the gsissh server by running the script as root /etc/init.d/gsisshd start  

/etc/grid-security 

Download the package http://wind.isi.edu/software/grid-security.tar.gz  

Untar the package as root in /etc.  

This will create directory called grid-security with the CA certificates etc in place.  

GRIDMAP file  

A file named grid-mapfile has to be created to map DN credentials to local users on the 
node.  

The file format is  

"/DN/FOO/BAR" userid "/DN/BAR/FOO" userid2  

The allocated user DN's are mentioned below. This will be later provided as an auto 
update file which every site can download using wget in a cron job.  

http://wind.isi.edu/software/grid-security.tar.gz
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TESTING GLOBUS 

Make sure you set your environment variables to include  

GLOBUS_LOCATION=</path to globus dir>  

and source $GLOBUS_LOCATION/etc/globus-user-env.sh  

After you have installed your User and host certs as described below, you need to run the 
command  

grid-proxy-init  

 
This will generate a proxy valid for 12 hours  

Then Follow the testing the ISI grid instructions at the bottom.  

To test your own grid server just change the hostname to your hostname. 

 

7.2.2 Linux Cluster Node Installation 

Follow similar instructions at: 

https://wiki.boozallenet.com/tangram/index.php/SR-SE-18-Linux_Cluster_node-
Instructions 
 

7.2.3 Windows Node Installation 

Follow similar instructions at: 

https://wiki.boozallenet.com/tangram/index.php/SR-SE-18-Windows_node-Instructions 

 

8. INTERIM PROJECT REPORTS AND DOCUMENTATION 
RELEASED 

The following reports and documentation were made available in the program wiki. The 
software released is described separately in the next section.  
 

• Instructions for modifying and maintaining site Catalogs  -- Released Oct 4, 2008.  

https://wiki.boozallenet.com/tangram/index.php/SR-SE-18-Linux_Cluster_node-Instructions
https://wiki.boozallenet.com/tangram/index.php/SR-SE-18-Linux_Cluster_node-Instructions
https://wiki.boozallenet.com/tangram/index.php/SR-SE-18-Windows_node-Instructions
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• Instructions for the Ensemble Manager installation -- Released September 15, 
2008.  

• Instructions for template validation in Wings -- Released September 12, 2008.  

• SR SE-18 Acceptance Test Cases -- Released July 31, 2008.  

• Workflow Generation API Version 2.1 -- Released: June 10, 2008.  

• Documentation on workflow requests to task the workflow system -- Released 
May 16, 2008.  

• Formulating workflow requests for SE-18  

• General documentation and background on workflow requests  

• Workflow Generation API for SE-18 -- Released April 8, 2008. 

• SR Critical Design Review for SE18 -- Released March 14, 2008. 

• Formalization and algorithm for automated generation of computational 
workflows from templates -- Released March 14, 2008. 

• SR Preliminary Design Review for SE18 -- Released February 22, 2008. 

• Design document for a user interface to the workflow system -- Released 
November 26, 2007. 

• Description of SR-12 workflow ranking algorithm -- Released November 9, 2007. 

• SR planning materials prepared for the Working Group Session held in Chicago 
IL on November 8-9, 2007. 

• SR_Workflow_Generation_API_V1.9 - Released September 4, 2007. 

• Workflow System Logs description - Released July 20, 2007. 

• SR planning materials prepared for the Working Group Session held in Chicago 
IL on July 19, 2007:  

o SR plans for SR-12, SE-18, and beyond  

o  SR high-level architecture  

o  SR thoughts on other program requirements, architecture and design 
issues  

• Ensemble Manager description -- Released July 13, 2007 

• SR_Workflow_Generation_API_V1.85 -- Released July 11, 2007.  

• SR_Workflow_Generation_API_V1.8 -- Released June 3, 2007.  

• Basic Component Encapsulation -- Basic information to describe the 
encapsulation of executable codes and associated wrappers as workflow 
components. Released April 13, 2007.  

• SR_Workflow_Generation_API_V1.1 -- Released April 5, 2007.  

• SR6_Metadata_Notes -- Metadata analysis for SR-6 group finding workflows. 
Released March 30, 2007.  
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• Running SR-6 workflows -- Detailed instructions to create and run SR-6 
workflows. Released March 29, 2007.  

• Wings Workflow Creation System -- Instructions to install the Wings software, 
which includes a workflow template browser/editor and an automatic workflow 
planning and generation capability that creates workflow instances to submit to 
Pegasus. Released March 22, 2007.  

• SR-6 Demonstration Report  - reviewed at the SR March 1, 2007 site visit.  

• Workflow Generation API - Describes the current draft of the proposed API for 
SR's automatic workflow generation capability. This API does not cover other 
reasoners needed by SR for workflow template editing, workflow template 
validation, workflow visualization, and other aspects of workflow management.  

• Automated Workflow Generation Process - Describes the approach to SR's 
automatic workflow generation capability.  

• Wings/Pegasus Overview - Describes algorithm and data models used in the 
current implementation of the Wings/Pegasus workflow system.  

• 20061214-SR-GroupSubWorkflowVariants-v2.pdf -- a report describing the 
workflows demonstrated in December 2006 by SR.  

• 20061128-SR-SR6-DataConops-v1.pdf -- describes the conops for the data 
sources used in the workflow. It also outlines the assumptions made regarding the 
data.  

• 20061102-SR-HatsBatchData-v1.pdf -- a description of the data generated by the 
Hats simulator.  

• Link to the Hats simulator web site used for synthetic data generation in SR-6. 

• conops-SR6.doc  -- a draft overall conops for the six-month demo from October 
31, 2006. It also describes the design of the workflow and the algorithms and data 
to be used. The overall goals for SR-6 evolved in later months so those portions of 
this document are dated.  

• 061213-SR-AlgorithmInfoRequiredForGrid-v3.doc -- Describes what information 
is needed by Pegasus from the Algorithm Catalog.  

• Best Practices for Writing Codes of Workflow Components -- Describes best 
practices for developing application codes to be run on the Grid. This was 
originally described in the document 061201-SR-RunningCodesGrid-v2.doc.  

• Componentizing Legacy Codes -- Examples of how to wrap legacy codes for 
execution on the Grid. It reports lessons learned from the process of 
componentizing third party codes for the SR-6 demo, and includes a section on 
building standalone executables in Lisp. This was originally described in the 
document 061208-SR-ComponentizingCodes-v4.pdf.  

• FAQ on setting up grid nodes -- Extensive documentation on program testbed, 
including how to set up a grid node, how to obtain certificates, how to install grid 
services and workflow system.  
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• Globus web site (http://www.globus/) includes many accessible materials, papers, 
and software downloads.  

• Ontologies and catalogs used in Wings/Pegasus (http://vtcpc.isi.edu/provenance) 
shown for an example workflow, including pointers to OWL domain ontologies, 
OWL component models, metadata, and representations for a workflow template, 
a workflow instance, a DAX, and an executable workflow.  

• Pegasus web site (http://pegasus.isi.edu/) -- includes many descriptive papers and 
software download.  

• Wings web site (http://www.isi.edu/ikcap/wings/) -- includes papers and detailed 
information about the approach. 

9.  CONCLUSIONS 

 

This Program was divided into Phases.  In the first phase the Program concentrated on 
building the Core Functionality, which included the basic grid infrastructure and basic 
workflow composition and execution functionality.  The second phase was focused on 
developing the Feasibility functionality.  This included plug and play analytic 
components, data characterization services, component process characterization and 
greatly improved core functionality. The third phase was to be focused on Core 
Intelligence, emphasizing the development and testing of complete computational 
analytic workflows that serve as threat detectors and alerting functions.  Due to funding 
cutbacks the Program did not continue to the third phase.  We did however, achieve 
significant success and did prove the feasibility of the workflow concept.   

 

http://www.globus/
http://vtcpc.isi.edu/provenance
http://pegasus.isi.edu/
http://www.isi.edu/ikcap/wings/
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11.  ACRONYMS 

 
API Application Programming Interface 

AC Algorithm Catalog 

DAG Directed Acyclic Graph 

DAX DAG XML (Directed Acyclic Graph Extensible Markup Language) 

DC Data Catalog 

DOD  Data Object Description 

EM  Ensemble Manager 

FR Functional Requirements 

ISI Information Sciences Institute 

MySQL My Structured Query Language  

PC  Process Catalog 

RDEC Research and Development Experimental Collaboration Facility  

SEA System Evaluation Architecture  

SE-18 System Evaluation at 18 months 

SR  System Research 

SR-12 System Research demonstration at 12 months 

TR Technical Requirement 

XML Extensible Markup Language 




